Kinetic trapping in protein folding.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2019-12-13 DOI:10.1093/protein/gzz018
Angela E. Varela, Kevin A. England, S. Cavagnero
{"title":"Kinetic trapping in protein folding.","authors":"Angela E. Varela, Kevin A. England, S. Cavagnero","doi":"10.1093/protein/gzz018","DOIUrl":null,"url":null,"abstract":"The founding principles of protein folding introduced by Christian Anfinsen, together with the numerous mechanistic investigations that followed, assume that protein folding is a thermodynamically controlled process. On the other hand, this review underscores the fact that thermodynamic control is far from being the norm in protein folding, as long as one considers an extended chemical-potential landscape encompassing aggregates, in addition to native, unfolded and intermediate states. Here, we highlight the key role of kinetic trapping of the protein native state relative to unfolded, intermediate and, most importantly, aggregated states. We propose that kinetic trapping serves an important role in biology by protecting the bioactive states of a large number of proteins from deleterious aggregation. In the event that undesired aggregates were somehow formed, specialized intracellular disaggregation machines have evolved to convert any aberrant populations back to the native state, thus restoring a fully bioactive and aggregation-protected protein cohort.","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"111 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzz018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

The founding principles of protein folding introduced by Christian Anfinsen, together with the numerous mechanistic investigations that followed, assume that protein folding is a thermodynamically controlled process. On the other hand, this review underscores the fact that thermodynamic control is far from being the norm in protein folding, as long as one considers an extended chemical-potential landscape encompassing aggregates, in addition to native, unfolded and intermediate states. Here, we highlight the key role of kinetic trapping of the protein native state relative to unfolded, intermediate and, most importantly, aggregated states. We propose that kinetic trapping serves an important role in biology by protecting the bioactive states of a large number of proteins from deleterious aggregation. In the event that undesired aggregates were somehow formed, specialized intracellular disaggregation machines have evolved to convert any aberrant populations back to the native state, thus restoring a fully bioactive and aggregation-protected protein cohort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质折叠中的动力学捕获。
Christian Anfinsen介绍的蛋白质折叠的基本原理,以及随后的许多机械研究,都假设蛋白质折叠是一个热力学控制的过程。另一方面,这篇综述强调了这样一个事实,即热力学控制远非蛋白质折叠的标准,只要人们考虑到一个扩展的化学势景观,除了天然状态,展开状态和中间状态外,还包括聚集体。在这里,我们强调了相对于未折叠状态、中间状态和最重要的聚集状态,蛋白质天然状态的动力学捕获的关键作用。我们提出动力学捕获在生物学中通过保护大量蛋白质的生物活性状态免受有害聚集而发挥重要作用。如果不需要的聚集体以某种方式形成,专门的细胞内分解机器已经进化到将任何异常群体转换回原生状态,从而恢复完全具有生物活性和聚集保护的蛋白质群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
Optimized single-cell gates for yeast display screening. TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Design of functional intrinsically disordered proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1