A Novel Multi-objective Optimization Algorithm Based on Artificial Immune System

Chun-hua Li, Xin-Jan Zhu, Wan-Qi Hu, G. Cao
{"title":"A Novel Multi-objective Optimization Algorithm Based on Artificial Immune System","authors":"Chun-hua Li, Xin-Jan Zhu, Wan-Qi Hu, G. Cao","doi":"10.1109/ICNC.2009.285","DOIUrl":null,"url":null,"abstract":"The traditional evolutionary algorithm (EA) for solving the multi-objective optimization problem (MOP) is difficult to accelerate convergence and keep the diversity of the achieved Pareto optimal solutions. A novel EA, i.e., Immune Multi-objective Optimization Algorithm (IMOA), is proposed to solve the MOP in this paper. The special evolutional mechanism of the artificial immune system (AIS) prevents the prematurity and quickens the convergence of optimization. The method combined by the random weighted method and the adaptive weighted method guarantee the acquired solutions to distribute on the Pareto front uniformly and widely. An external set for storing the Pareto optimal solutions is built up and updated by a novel approach. By graphical presentation and examination of selected performance metrics on two difficult test functions, the proposed IMOA is found to outperform four other algorithms in terms of finding a diverse set of solutions and converging near the true Pareto front.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"31 1","pages":"569-574"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The traditional evolutionary algorithm (EA) for solving the multi-objective optimization problem (MOP) is difficult to accelerate convergence and keep the diversity of the achieved Pareto optimal solutions. A novel EA, i.e., Immune Multi-objective Optimization Algorithm (IMOA), is proposed to solve the MOP in this paper. The special evolutional mechanism of the artificial immune system (AIS) prevents the prematurity and quickens the convergence of optimization. The method combined by the random weighted method and the adaptive weighted method guarantee the acquired solutions to distribute on the Pareto front uniformly and widely. An external set for storing the Pareto optimal solutions is built up and updated by a novel approach. By graphical presentation and examination of selected performance metrics on two difficult test functions, the proposed IMOA is found to outperform four other algorithms in terms of finding a diverse set of solutions and converging near the true Pareto front.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于人工免疫系统的多目标优化算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1