Degradation of methyl orange using dielectric barrier discharge water falling film reactor

Baowei Wang, Meng Xu, Chunmei Chi, Chao Wang, Dajun Meng
{"title":"Degradation of methyl orange using dielectric barrier discharge water falling film reactor","authors":"Baowei Wang, Meng Xu, Chunmei Chi, Chao Wang, Dajun Meng","doi":"10.1515/JAOTS-2017-0021","DOIUrl":null,"url":null,"abstract":"Abstract The dielectric barrier discharge (DBD) technique based cylindrical water falling film reactor was used for degrading an azo dye methyl orange (MO). The primary conditions affecting the degradation of methyl orange were systematically investigated. After 30 min plasma treatment, the degradation rate of MO was as high as 93.7% with gas velocity of 300 mL/min and the input energy of 72.5W. The influences of initial pH and conductivity of MO solution were also explored. The results indicated that the optimum pH value was 3.02 and 99.1% removal of MO was achieved within 30 min. Three catalytic systems DBD/Fe2+, DBD/PS (persulfate) and DBD/Fe2+/PS were examined to improve the degradation rate and the chemical oxygen demand (COD) removal rate of MO. The highest degradation rate (100%) and COD removal rate (72.4%) happened in DBD/Fe2+/PS system. The degradation products were analyzed by LC-MS in DBD system and DBD/Fe2+/PS system respectively, and then the possible degradation pathways of MO were proposed.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JAOTS-2017-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 22

Abstract

Abstract The dielectric barrier discharge (DBD) technique based cylindrical water falling film reactor was used for degrading an azo dye methyl orange (MO). The primary conditions affecting the degradation of methyl orange were systematically investigated. After 30 min plasma treatment, the degradation rate of MO was as high as 93.7% with gas velocity of 300 mL/min and the input energy of 72.5W. The influences of initial pH and conductivity of MO solution were also explored. The results indicated that the optimum pH value was 3.02 and 99.1% removal of MO was achieved within 30 min. Three catalytic systems DBD/Fe2+, DBD/PS (persulfate) and DBD/Fe2+/PS were examined to improve the degradation rate and the chemical oxygen demand (COD) removal rate of MO. The highest degradation rate (100%) and COD removal rate (72.4%) happened in DBD/Fe2+/PS system. The degradation products were analyzed by LC-MS in DBD system and DBD/Fe2+/PS system respectively, and then the possible degradation pathways of MO were proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介质阻挡放电降膜反应器降解甲基橙
摘要采用介电阻挡放电(DBD)技术的圆柱形降膜反应器降解偶氮染料甲基橙(MO)。对影响甲基橙降解的主要条件进行了系统研究。等离子体处理30min后,当气速为300 mL/min,输入能量为72.5W时,MO的降解率高达93.7%。探讨了MO溶液初始pH值和电导率的影响。结果表明,最佳pH值为3.02,在30 min内可达到99.1%的MO去除率。考察了DBD/Fe2+、DBD/PS(过硫酸盐)和DBD/Fe2+/PS三种催化体系对MO的降解率和化学需氧量(COD)去除率的影响,其中DBD/Fe2+/PS体系的降解率最高(100%),COD去除率最高(72.4%)。采用LC-MS分别对DBD体系和DBD/Fe2+/PS体系中的降解产物进行了分析,提出了MO可能的降解途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
期刊最新文献
Catalytic Ozonation of Ciprofloxacin over Cerium Oxide Modified SBA-15 and Toxicity Assessment towards E. coli Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in Aqueous Solution by Combination of Hydrogen Peroxide, Nanocrystallite Zinc Oxide and Ultrasound Irradiation Degradation of Cyanide using Stabilized S, N-TiO2 Nanoparticles by Visible and Sun Light Environmental Matrix Effects on Degradation Kinetics of Ibuprofen in a UV/ Persulfate System An Overview of Ozone Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1