Function Finding Using Gene Expression Programming Based Neural Network

Qu Li, Weihong Wang, Xing Qi, Bo Chen, Jianhong Li
{"title":"Function Finding Using Gene Expression Programming Based Neural Network","authors":"Qu Li, Weihong Wang, Xing Qi, Bo Chen, Jianhong Li","doi":"10.1109/ICNC.2008.688","DOIUrl":null,"url":null,"abstract":"Gene expression programming (GEP) is a kind of heuristic method based on evolutionary computation theory. Basic GEP method has been proved to be powerful in symbolic regression and other data mining as well as machine learning tasks. However, GEP's potential for neural network learning has not been well studied. In this paper, we prove that GEP neural network (GEPNN) is not able to solve high order regression problems. Based on our proof, we propose an extended method for evolving neural network with GEP. The extended GEPNN is used in various kinds of function finding problems. Results on multiple leaning methods show the effectiveness of our method.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"61 1","pages":"195-198"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gene expression programming (GEP) is a kind of heuristic method based on evolutionary computation theory. Basic GEP method has been proved to be powerful in symbolic regression and other data mining as well as machine learning tasks. However, GEP's potential for neural network learning has not been well studied. In this paper, we prove that GEP neural network (GEPNN) is not able to solve high order regression problems. Based on our proof, we propose an extended method for evolving neural network with GEP. The extended GEPNN is used in various kinds of function finding problems. Results on multiple leaning methods show the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基因表达式编程的神经网络功能查找
基因表达式编程(GEP)是一种基于进化计算理论的启发式算法。基本GEP方法已被证明在符号回归和其他数据挖掘以及机器学习任务中具有强大的功能。然而,GEP在神经网络学习方面的潜力还没有得到很好的研究。在本文中,我们证明了GEP神经网络(GEPNN)不能解决高阶回归问题。在证明的基础上,我们提出了一种基于GEP的神经网络演化的扩展方法。扩展的GEPNN用于求解各种函数查找问题。多种学习方法的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1