Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-06-01 DOI:10.3866/PKU.WHXB202306054
Wenjuan Tan , Yong Ye , Xiujuan Sun, Bei Liu, Jiajia Zhou, Hailong Liao, Xiulin Wu, Rui Ding, Enhui Liu, Ping Gao
{"title":"Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation","authors":"Wenjuan Tan ,&nbsp;Yong Ye ,&nbsp;Xiujuan Sun,&nbsp;Bei Liu,&nbsp;Jiajia Zhou,&nbsp;Hailong Liao,&nbsp;Xiulin Wu,&nbsp;Rui Ding,&nbsp;Enhui Liu,&nbsp;Ping Gao","doi":"10.3866/PKU.WHXB202306054","DOIUrl":null,"url":null,"abstract":"<div><div>Handling hydrazine/urea wastewater through electrochemical oxidation technology (HzOR/UOR) holds significant importance for sewage disposal and nitrogen recycling, as the presence of hydrazine/urea leads to severe environmental issues. On the other hand, hydrazine/urea could potentially serve as a new type of fuel. However, at present, this remains a considerable challenge. The development of a low-cost, highly efficient, and stable electrocatalyst stands as a prerequisite for achieving this goal. In this study, a novel Ni<sub>2</sub>P/CoP<sub>3</sub>-Zn<sub>vac</sub> bimetallic phosphide catalyst is designed and constructed using a hydrothermal-alkali etching-phosphating three-step method. This catalyst integrates P-rich CoP<sub>3</sub>, P-poor metallic Ni<sub>2</sub>P, and abundant Zn<sup>2+</sup> cation vacancies into a single structure for HzOR/UOR. Copious P in CoP<sub>3</sub> provides a wealth of negative electrons, which aids in the adsorption of positive reactive intermediates. Meanwhile, P-poor metallic Ni<sub>2</sub>P exhibits excellent electrical conductivity, ensuring rapid reaction dynamics. Both physical and electrochemical experiments confirm the successful creation of the Ni<sub>2</sub>P/CoP<sub>3</sub>-Zn<sub>vac</sub> heterojunction, along with the distinctive electron structure of Ni<sub>2</sub>P and CoP<sub>3</sub>. Electron paramagnetic resonance (EPR) results validate the presence of cation vacancies, which significantly enhance the density of active sites. Consequently, this innovative Ni<sub>2</sub>P/CoP<sub>3</sub>-Zn<sub>vac</sub> heterojunction catalyst displays remarkable electrocatalytic activity, achieving a potential of −47 mV/1.311 V to attain 10 mA·cm<sup>−2</sup> for HzOR and UOR, respectively. The Tafel slopes of 54.3 and 37.24 mV·dec<sup>−1</sup> for HzOR and UOR are significantly smaller than those of single-phased Ni<sub>2</sub>P and CoP<sub>3</sub>, as well as the two-phased phosphide without alkali etching. Building upon the excellent HzOR/UOR performance of the Ni<sub>2</sub>P/CoP<sub>3</sub>-Zn<sub>vac</sub> heterojunction, a two-electrode cell for direct hydrazine fuel cells (DHzFC) and direct urea-hydrogen peroxide fuel cells (DUHPFC) is assembled with a Ni<sub>2</sub>P/CoP<sub>3</sub>-Zn<sub>vac</sub> anode. This configuration demonstrates a maximum power density of 229.01 mW·cm<sup>−2</sup> for DHzFC and 16.22 mW·cm<sup>−2</sup> for DUHPFC. Moreover, both DHzFC and DUHPFC exhibit exceptional stability for up to 24 h. A homemade aqueous Zn-Hz battery, equipped with a Ni<sub>2</sub>P/CoP<sub>3</sub>-Zn<sub>vac</sub> cathode, further demonstrates its practicality for energy conversion. This work underscores a promising avenue for developing cost-effective and highly stable solutions for UOR and HzOR.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (129KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 6","pages":"Article 2306054"},"PeriodicalIF":13.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000997","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Handling hydrazine/urea wastewater through electrochemical oxidation technology (HzOR/UOR) holds significant importance for sewage disposal and nitrogen recycling, as the presence of hydrazine/urea leads to severe environmental issues. On the other hand, hydrazine/urea could potentially serve as a new type of fuel. However, at present, this remains a considerable challenge. The development of a low-cost, highly efficient, and stable electrocatalyst stands as a prerequisite for achieving this goal. In this study, a novel Ni2P/CoP3-Znvac bimetallic phosphide catalyst is designed and constructed using a hydrothermal-alkali etching-phosphating three-step method. This catalyst integrates P-rich CoP3, P-poor metallic Ni2P, and abundant Zn2+ cation vacancies into a single structure for HzOR/UOR. Copious P in CoP3 provides a wealth of negative electrons, which aids in the adsorption of positive reactive intermediates. Meanwhile, P-poor metallic Ni2P exhibits excellent electrical conductivity, ensuring rapid reaction dynamics. Both physical and electrochemical experiments confirm the successful creation of the Ni2P/CoP3-Znvac heterojunction, along with the distinctive electron structure of Ni2P and CoP3. Electron paramagnetic resonance (EPR) results validate the presence of cation vacancies, which significantly enhance the density of active sites. Consequently, this innovative Ni2P/CoP3-Znvac heterojunction catalyst displays remarkable electrocatalytic activity, achieving a potential of −47 mV/1.311 V to attain 10 mA·cm−2 for HzOR and UOR, respectively. The Tafel slopes of 54.3 and 37.24 mV·dec−1 for HzOR and UOR are significantly smaller than those of single-phased Ni2P and CoP3, as well as the two-phased phosphide without alkali etching. Building upon the excellent HzOR/UOR performance of the Ni2P/CoP3-Znvac heterojunction, a two-electrode cell for direct hydrazine fuel cells (DHzFC) and direct urea-hydrogen peroxide fuel cells (DUHPFC) is assembled with a Ni2P/CoP3-Znvac anode. This configuration demonstrates a maximum power density of 229.01 mW·cm−2 for DHzFC and 16.22 mW·cm−2 for DUHPFC. Moreover, both DHzFC and DUHPFC exhibit exceptional stability for up to 24 h. A homemade aqueous Zn-Hz battery, equipped with a Ni2P/CoP3-Znvac cathode, further demonstrates its practicality for energy conversion. This work underscores a promising avenue for developing cost-effective and highly stable solutions for UOR and HzOR.
  1. Download: Download high-res image (129KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用阳离子空位构建贫磷Ni2P和富磷CoP3异质结结构增强电催化肼和尿素氧化
通过电化学氧化技术(HzOR/UOR)处理联氨/尿素废水对污水处理和氮回收具有重要意义,因为联氨/尿素的存在会导致严重的环境问题。另一方面,联氨/尿素有可能成为一种新型燃料。然而,目前,这仍然是一个相当大的挑战。开发一种低成本、高效、稳定的电催化剂是实现这一目标的先决条件。本研究采用水热-碱蚀刻-磷化三步法制备了Ni2P/CoP3-Znvac双金属磷化物催化剂。该催化剂将富p的CoP3、贫p的金属Ni2P和丰富的Zn2+阳离子空位整合到HzOR/UOR的单一结构中。CoP3中丰富的P提供了丰富的负电子,这有助于正反应中间体的吸附。同时,贫p金属Ni2P具有优异的导电性,保证了快速的反应动力学。物理和电化学实验证实了Ni2P/CoP3- znvac异质结的成功建立,以及Ni2P和CoP3不同的电子结构。电子顺磁共振(EPR)结果证实了阳离子空位的存在,这显著提高了活性位点的密度。因此,这种创新的Ni2P/CoP3-Znvac异质结催化剂显示出显著的电催化活性,对HzOR和UOR分别达到- 47 mV/1.311 V,达到10 mA·cm−2。HzOR和UOR的Tafel斜率分别为54.3和37.24 mV·dec−1,明显小于单相Ni2P和CoP3以及未碱蚀的两相磷化物。基于Ni2P/CoP3-Znvac异质结优异的HzOR/UOR性能,采用Ni2P/CoP3-Znvac阳极组装了用于直接肼燃料电池(DHzFC)和直接尿素-过氧化氢燃料电池(DUHPFC)的双电极电池。DHzFC的最大功率密度为229.01 mW·cm−2,DUHPFC的最大功率密度为16.22 mW·cm−2。此外,DHzFC和DUHPFC都表现出长达24小时的优异稳定性。配备Ni2P/CoP3-Znvac阴极的自制含水Zn-Hz电池进一步证明了其能量转换的实用性。这项工作强调了为UOR和HzOR开发具有成本效益和高度稳定的解决方案的有希望的途径。下载:下载高清图片(129KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Machine learning potentials for property predictions of two-dimensional group-III nitrides Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries MOF/MOF nanosheets S-scheme heterojunction for accelerated charge kinetics and efficient photocatalytic H2 evolution 2D COF photocatalyst with highly stabilized tautomeric transition and singlet oxygen generation Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1