Modeling and Design of a Solar Rotary Dryer Bench Test for Phosphate Sludge

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2022-01-27 DOI:10.1155/2022/5574242
Khadija Ettahi, Meriem Chaanaoui, Vaudreuil Sébastien, S. Abderafi, T. Bounahmidi
{"title":"Modeling and Design of a Solar Rotary Dryer Bench Test for Phosphate Sludge","authors":"Khadija Ettahi, Meriem Chaanaoui, Vaudreuil Sébastien, S. Abderafi, T. Bounahmidi","doi":"10.1155/2022/5574242","DOIUrl":null,"url":null,"abstract":"As an eco-friendlier way to manage mining waste, the use of solar energy to dry phosphate sludge in a rotary dryer is envisioned. As a first step toward this end, a design study for a bench-scale rotary dryer for phosphate sludge is detailed, using a one-dimensional mathematical model developed for this task. Using the Engineering Equation Solver (EES) software, a steady-state transport phenomena model was developed that enables an estimation of the moisture and temperature profiles for both gas and product in the dryer. A sensitivity analysis evaluated the effects and influence of different geometric parameters and operating conditions on the product moisture profile. Parameters involved include the diameter of the dryer, the residence time of the product to dry, inlet air temperature, and inlet product humidity. This allowed for the selection of suitable design parameters for the operation of a phosphate sludge dryer with a 1.5 m length and an internal diameter of 11.5 cm. The inlet air temperature of the rotary dryer was set at 200°C to achieve a reduction of moisture content in the product from 30% to 7%. The model was validated through literature and experimental datasets, with an error averaging 0.22% and 1.52%, respectively.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5574242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

As an eco-friendlier way to manage mining waste, the use of solar energy to dry phosphate sludge in a rotary dryer is envisioned. As a first step toward this end, a design study for a bench-scale rotary dryer for phosphate sludge is detailed, using a one-dimensional mathematical model developed for this task. Using the Engineering Equation Solver (EES) software, a steady-state transport phenomena model was developed that enables an estimation of the moisture and temperature profiles for both gas and product in the dryer. A sensitivity analysis evaluated the effects and influence of different geometric parameters and operating conditions on the product moisture profile. Parameters involved include the diameter of the dryer, the residence time of the product to dry, inlet air temperature, and inlet product humidity. This allowed for the selection of suitable design parameters for the operation of a phosphate sludge dryer with a 1.5 m length and an internal diameter of 11.5 cm. The inlet air temperature of the rotary dryer was set at 200°C to achieve a reduction of moisture content in the product from 30% to 7%. The model was validated through literature and experimental datasets, with an error averaging 0.22% and 1.52%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷污泥太阳能旋转干燥台架试验的建模与设计
作为一种更环保的方式来管理采矿废物,利用太阳能干燥磷酸盐污泥在旋转干燥器被设想。作为实现这一目标的第一步,使用为此任务开发的一维数学模型,对磷酸盐污泥的台式旋转干燥机进行了详细的设计研究。利用工程方程求解器(EES)软件,开发了一个稳态传输现象模型,可以估计干燥器中气体和产品的水分和温度分布。灵敏度分析评估了不同几何参数和操作条件对产品水分分布的影响。涉及的参数包括干燥机的直径、产品干燥的停留时间、进风温度和进风湿度。这样就可以选择合适的设计参数来运行一个长度为1.5米,内径为11.5厘米的磷酸盐污泥干燥器。将旋转干燥机的进风温度设定为200℃,使产品的含水率从30%降低到7%。通过文献和实验数据集对模型进行验证,平均误差分别为0.22%和1.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Finite Element Modelling and Simulation of Tunnel Gates of Dam Structures in ABAQUS Using Reduced-Integrated 8-Node Hexahedral Solid-Shell Element Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack Assessment of Fractional and Integer Order Models of Induction Motor Using MATLAB/Simulink State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell Predictive Modeling of Environmental Impact on Drone Datalink Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1