Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function

Kyohei Suzuki, M. Yukawa
{"title":"Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function","authors":"Kyohei Suzuki, M. Yukawa","doi":"10.23919/Eusipco47968.2020.9287635","DOIUrl":null,"url":null,"abstract":"We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"109 1","pages":"2070-2074"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极大极小凹损失函数的鲁棒联合稀疏信号恢复
我们提出了一种鲁棒的方法来恢复联合稀疏信号在异常值的存在。我们将恢复任务表述为包含三个项的最小化问题:(i)极大极小凹(MC)损失函数,(ii) MC惩罚函数,以及(iii) Frobenius范数的平方。基于mc的损失函数和惩罚函数分别增强了鲁棒性和群稀疏性,而平方Frobenius范数诱导了凸性。通过对原对偶分裂方法的重新表述,得到了该方法的收敛条件。数值算例表明,该方法具有显著的离群鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1