V. Bório, Rubens Vinha, R. Nicolau, H. P. M. D. Oliveira, C. J. Lima, L. Silveira
{"title":"Quantitative Evaluation of Acetaminophen in Oral Solutions by Dispersive Raman Spectroscopy for Quality Control","authors":"V. Bório, Rubens Vinha, R. Nicolau, H. P. M. D. Oliveira, C. J. Lima, L. Silveira","doi":"10.1155/2012/108041","DOIUrl":null,"url":null,"abstract":"This work used dispersive Raman spectroscopy to evaluate acetaminophen in commercially available formulations as an analytical methodology for quality control in the pharmaceutical industry. Raman spectra were collected using a near-infrared dispersive Raman spectrometer (830 nm, 50 mW, 20 s exposure time) coupled to a fiber optic probe. Solutions of acetaminophen diluted in excipient (70 to 120% of the commercial concentration of 200 mg/mL) were used to develop a calibration model based on partial least squares (PLSs) applied to Raman spectra of solutions and, subsequently, obtain linearity, accuracy, precision (repeatability), and sensitivity of the method using the near-infrared spectroscopy (NIRS) as a gold standard method. This model was used to predict the acetaminophen concentration in commercial samples from different lots of acetaminophen formulations (200 mg/mL) with a PLS-prediction error of about 0.6%. Commercial medicines had PLS predicted concentrations errors below 2.5%, whereas NIRS had an error of about 3.7% compared to the label concentration. It has been demonstrated the applicability of Raman spectroscopy with fiber probe for quality control in pharmaceutical industry of commercial formulations.","PeriodicalId":51163,"journal":{"name":"Spectroscopy-An International Journal","volume":"1 1","pages":"215-228"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/108041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This work used dispersive Raman spectroscopy to evaluate acetaminophen in commercially available formulations as an analytical methodology for quality control in the pharmaceutical industry. Raman spectra were collected using a near-infrared dispersive Raman spectrometer (830 nm, 50 mW, 20 s exposure time) coupled to a fiber optic probe. Solutions of acetaminophen diluted in excipient (70 to 120% of the commercial concentration of 200 mg/mL) were used to develop a calibration model based on partial least squares (PLSs) applied to Raman spectra of solutions and, subsequently, obtain linearity, accuracy, precision (repeatability), and sensitivity of the method using the near-infrared spectroscopy (NIRS) as a gold standard method. This model was used to predict the acetaminophen concentration in commercial samples from different lots of acetaminophen formulations (200 mg/mL) with a PLS-prediction error of about 0.6%. Commercial medicines had PLS predicted concentrations errors below 2.5%, whereas NIRS had an error of about 3.7% compared to the label concentration. It has been demonstrated the applicability of Raman spectroscopy with fiber probe for quality control in pharmaceutical industry of commercial formulations.