Design and comparative analysis of grid-connected BIPV system with monocrystalline silicon and polycrystalline silicon in Kandahar climate

Ahmad Shah Irshad
{"title":"Design and comparative analysis of grid-connected BIPV system with monocrystalline silicon and polycrystalline silicon in Kandahar climate","authors":"Ahmad Shah Irshad","doi":"10.1051/matecconf/202337403002","DOIUrl":null,"url":null,"abstract":"Building integrated photovoltaic (BIPV) system is a new and modern technique for solar energy production in Kandahar. Due to its location, Kandahar has abundant sources of solar energy. People use both monocrystalline and polycrystalline silicon solar PV modules for the grid-connected solar PV system, and they don’t know that which technology performs better for BIPV system. This paper analysis the parameters, described by IEC61724 “Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis” to evaluate which technology shows better performance for the BIPV system. The monocrystalline silicon BIPV system has a 3.1% higher array yield than the polycrystalline silicon BIPV system. The final yield is 0.2% somewhat higher for monocrystalline silicon than polycrystalline silicon. Monocrystalline silicon has 0.2% and 4.5% greater yearly yield factor and capacity factors than polycrystalline silicon respectively. Monocrystalline silicon shows 0.3% better performance than polycrystalline silicon. With 1.7% reduction and 0.4% addition in collection losses and useful energy produced respectively, monocrystalline silicon solar PV system shows good performance than polycrystalline silicon solar PV system. But system losses are the same for both technologies. The monocrystalline silicon BIPV system injects 0.2% more energy to the grid than the polycrystalline silicon BIPV system.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337403002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Building integrated photovoltaic (BIPV) system is a new and modern technique for solar energy production in Kandahar. Due to its location, Kandahar has abundant sources of solar energy. People use both monocrystalline and polycrystalline silicon solar PV modules for the grid-connected solar PV system, and they don’t know that which technology performs better for BIPV system. This paper analysis the parameters, described by IEC61724 “Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis” to evaluate which technology shows better performance for the BIPV system. The monocrystalline silicon BIPV system has a 3.1% higher array yield than the polycrystalline silicon BIPV system. The final yield is 0.2% somewhat higher for monocrystalline silicon than polycrystalline silicon. Monocrystalline silicon has 0.2% and 4.5% greater yearly yield factor and capacity factors than polycrystalline silicon respectively. Monocrystalline silicon shows 0.3% better performance than polycrystalline silicon. With 1.7% reduction and 0.4% addition in collection losses and useful energy produced respectively, monocrystalline silicon solar PV system shows good performance than polycrystalline silicon solar PV system. But system losses are the same for both technologies. The monocrystalline silicon BIPV system injects 0.2% more energy to the grid than the polycrystalline silicon BIPV system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
坎大哈气候条件下单晶硅和多晶硅BIPV并网系统设计与比较分析
建筑一体化光伏(BIPV)系统是坎大哈一种新型的现代太阳能发电技术。由于其地理位置,坎大哈拥有丰富的太阳能资源。人们在并网太阳能光伏系统中既使用单晶硅太阳能光伏组件,也使用多晶硅太阳能光伏组件,他们不知道哪种技术更适合BIPV系统。本文分析了IEC61724《光伏系统性能监测测量、数据交换和分析指南》中描述的参数,以评估哪种技术对BIPV系统表现出更好的性能。单晶硅BIPV系统的阵列产率比多晶硅BIPV系统高3.1%。单晶硅的最终产率比多晶硅高0.2%。单晶硅的年产率因子和容量因子分别比多晶硅高0.2%和4.5%。单晶硅的性能比多晶硅高0.3%。单晶硅太阳能光伏系统比多晶硅太阳能光伏系统表现出较好的性能,其收集损失和产生的有用能量分别减少1.7%和0.4%。但是两种技术的系统损失是相同的。单晶硅BIPV系统向电网注入的能量比多晶硅BIPV系统多0.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
期刊最新文献
Classification of intracranial hemorrhage (CT) images using CNN-LSTM method and image-based GLCM features Study of pathways to reduce the energy consumption of the CO2 capture process by absorption-regeneration Optimizations of the internal structure of the reel of a double rope winder The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine Physicochemical studies of composite coatings during accelerated tests for atmospheric corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1