N. Hunter, A. Mayorov, C. Wood, C. Russell, M. Rosamond, L. Li, E. Linfield, A. Davies, J. Cunningham
{"title":"Spatially resolved on-chip picosecond pulse detection using graphene","authors":"N. Hunter, A. Mayorov, C. Wood, C. Russell, M. Rosamond, L. Li, E. Linfield, A. Davies, J. Cunningham","doi":"10.1109/IRMMW-THZ.2015.7327831","DOIUrl":null,"url":null,"abstract":"We present an on-chip time domain terahertz (TD-THz) system in which picosecond pulses are generated in low-temperature-grown gallium arsenide (LT-GaAs) and detected in graphene. The detected pulses were found to vary in amplitude, full width at half maximum (FWHM), and DC offset when sampled optically at different locations along a 50-μm-long graphene photoconductive (PC) detector. The results demonstrate the importance of detection location and switch design in graphene-based on-chip PC detectors.","PeriodicalId":6577,"journal":{"name":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","volume":"29 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2015.7327831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present an on-chip time domain terahertz (TD-THz) system in which picosecond pulses are generated in low-temperature-grown gallium arsenide (LT-GaAs) and detected in graphene. The detected pulses were found to vary in amplitude, full width at half maximum (FWHM), and DC offset when sampled optically at different locations along a 50-μm-long graphene photoconductive (PC) detector. The results demonstrate the importance of detection location and switch design in graphene-based on-chip PC detectors.