Investigating the Interaction between Methanol and the Heulandite-type Zeolite using First Principle Molecular Dynamic

Fiska Dewi Wulandhani, F. Pambudi
{"title":"Investigating the Interaction between Methanol and the Heulandite-type Zeolite using First Principle Molecular Dynamic","authors":"Fiska Dewi Wulandhani, F. Pambudi","doi":"10.9767/bcrec.17.3.15169.542-553","DOIUrl":null,"url":null,"abstract":"The interaction between methanol and the Heulandite-type zeolite has been unveiled to give an atomic scale detail regarding the catalytic activity of this zeolite for methanol conversion. The study was carried out by first principle molecular dynamics to get an insight into the structure and electronic behaviour of methanol inside the zeolite structure at different temperatures. The behaviour of methanol was studied when the location of the proton of Bronsted acid sites was varied to give both possible direct and less interaction with methanol. The results show that methanol interacts with the proton from zeolite to give a cationic species of [CH3OH2]+ both in 300K and 573K conditions. However, when the proton is located at different location far from possible interaction with methanol, the formation of a cationic species is hindered. This study provides an insight into the design of Heulandite type zeolite to give a catalytic activity toward methanol transformation.","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.3.15169.542-553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between methanol and the Heulandite-type zeolite has been unveiled to give an atomic scale detail regarding the catalytic activity of this zeolite for methanol conversion. The study was carried out by first principle molecular dynamics to get an insight into the structure and electronic behaviour of methanol inside the zeolite structure at different temperatures. The behaviour of methanol was studied when the location of the proton of Bronsted acid sites was varied to give both possible direct and less interaction with methanol. The results show that methanol interacts with the proton from zeolite to give a cationic species of [CH3OH2]+ both in 300K and 573K conditions. However, when the proton is located at different location far from possible interaction with methanol, the formation of a cationic species is hindered. This study provides an insight into the design of Heulandite type zeolite to give a catalytic activity toward methanol transformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用第一性原理分子动力学研究甲醇与heullandite型沸石的相互作用
甲醇和heullandite型沸石之间的相互作用已经被揭开,给出了关于这种沸石催化甲醇转化活性的原子尺度细节。本研究采用第一性原理分子动力学进行,以深入了解不同温度下沸石结构内甲醇的结构和电子行为。当Bronsted酸位点的质子位置发生变化时,研究了甲醇的行为,以获得可能的直接和较少的与甲醇的相互作用。结果表明,在300K和573K条件下,甲醇与沸石中的质子相互作用生成阳离子[CH3OH2]+。然而,当质子位于远离可能与甲醇相互作用的不同位置时,阳离子的形成受到阻碍。该研究为设计具有甲醇转化催化活性的Heulandite型沸石提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesize and Characterization of Pt-supported Co-ZIF for Catalytic Hydrocracking and Hydroisomerization of n-Hexadecane Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite Use of Sulfuric Acid-Impregnated Biochar Catalyst in Making of Biodiesel From Waste Cooking Oil Via Leaching Method Hexagonal TiO2/SiO2 Porous Microplates for Methylene Blue Photodegradation Conversion of Sunan Candlenut Oil to Aromatic Hydrocarbons with Hydrocracking Process Over Nano-HZSM-5 Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1