Effect of Wind Turbulence on Extreme Load Analysis of an Offshore Wind Turbine

Xiaolu Chen, Zhiyu Jiang, Qinyuan Li, Ye Li
{"title":"Effect of Wind Turbulence on Extreme Load Analysis of an Offshore Wind Turbine","authors":"Xiaolu Chen, Zhiyu Jiang, Qinyuan Li, Ye Li","doi":"10.1115/omae2019-95634","DOIUrl":null,"url":null,"abstract":"\n Evaluation of dynamic responses under extreme environmental conditions is important for the structural design of offshore wind turbines. Previously, a modified environmental contour method has been proposed to estimate extreme responses. In the method, the joint distribution of environmental variables near the cut-out wind speed is used to derive the critical environmental conditions for a specified return period, and the turbulence intensity (TI) of wind is assumed to be a deterministic value. To address more realistic wind conditions, this paper considers the turbulence intensity as a stochastic variable and investigates the impact on the modified environmental contour. Aerodynamic simulations are run over a range of mean wind speeds at the hub height from 9–25 m/s and turbulence levels between 9%–15%. Dynamic responses of a monopile offshore wind turbine under extreme conditions were studied, and the importance of considering the uncertainties associated with wind turbulence is highlighted. A case of evaluating the extreme response for 50-year environmental contour is given as an example of including TI as an extra variant in environmental contour method. The result is compared with traditional method in which TI is set as a constant of 15%. It shows that taking TI into consideration based on probabilistic method produces a lower extreme response prediction.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Evaluation of dynamic responses under extreme environmental conditions is important for the structural design of offshore wind turbines. Previously, a modified environmental contour method has been proposed to estimate extreme responses. In the method, the joint distribution of environmental variables near the cut-out wind speed is used to derive the critical environmental conditions for a specified return period, and the turbulence intensity (TI) of wind is assumed to be a deterministic value. To address more realistic wind conditions, this paper considers the turbulence intensity as a stochastic variable and investigates the impact on the modified environmental contour. Aerodynamic simulations are run over a range of mean wind speeds at the hub height from 9–25 m/s and turbulence levels between 9%–15%. Dynamic responses of a monopile offshore wind turbine under extreme conditions were studied, and the importance of considering the uncertainties associated with wind turbulence is highlighted. A case of evaluating the extreme response for 50-year environmental contour is given as an example of including TI as an extra variant in environmental contour method. The result is compared with traditional method in which TI is set as a constant of 15%. It shows that taking TI into consideration based on probabilistic method produces a lower extreme response prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风湍流对海上风力机极限载荷分析的影响
极端环境条件下的动力响应评估对海上风力发电机组的结构设计具有重要意义。在此之前,已经提出了一种改进的环境等高线法来估计极端响应。该方法利用切断风速附近环境变量的联合分布,推导出特定回归周期的临界环境条件,并假设风的湍流强度(TI)为确定性值。为了解决更现实的风条件,本文将湍流强度作为随机变量,并研究了对修改后的环境等高线的影响。空气动力学模拟在轮毂高度9-25米/秒的平均风速范围内进行,湍流水平在9%-15%之间。研究了单桩海上风力机在极端条件下的动力响应,强调了考虑风湍流相关不确定性的重要性。以50年环境等高线的极端响应评价为例,将TI作为环境等高线方法的额外变量。将结果与TI设为15%常数的传统方法进行了比较。结果表明,基于概率方法考虑TI可得到较低极值响应预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Different Pile Installation Methods on Dense Sand Estimating Second Order Wave Drift Forces and Moments for Calculating DP Capability Plots A Conjoint Analysis of the Stability and Time-Domain Analysis on Floating Platform During Mooring Line Breaking Wave Propagation in CFD-Based Numerical Wave Tank CFD Analysis on Hydrodynamic Characteristics for Optimizing Torpedo Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1