Multimodal Spatio-Temporal Information in End-to-End Networks for Automotive Steering Prediction

M. Abou-Hussein, Stefan H. Müller-Weinfurtner, J. Boedecker
{"title":"Multimodal Spatio-Temporal Information in End-to-End Networks for Automotive Steering Prediction","authors":"M. Abou-Hussein, Stefan H. Müller-Weinfurtner, J. Boedecker","doi":"10.1109/ICRA.2019.8794410","DOIUrl":null,"url":null,"abstract":"We study the end-to-end steering problem using visual input data from an onboard vehicle camera. An empirical comparison between spatial, spatio-temporal and multimodal models is performed assessing each concept’s performance from two points of evaluation. First, how close the model is in predicting and imitating a real-life driver’s behavior, second, the smoothness of the predicted steering command. The latter is a newly proposed metric. Building on our results, we propose a new recurrent multimodal model. The suggested model has been tested on a custom dataset recorded by BMW, as well as the public dataset provided by Udacity. Results show that it outperforms previously released scores. Further, a steering correction concept from off-lane driving through the inclusion of correction frames is presented. We show that our suggestion leads to promising results empirically.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"16 1","pages":"8641-8647"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the end-to-end steering problem using visual input data from an onboard vehicle camera. An empirical comparison between spatial, spatio-temporal and multimodal models is performed assessing each concept’s performance from two points of evaluation. First, how close the model is in predicting and imitating a real-life driver’s behavior, second, the smoothness of the predicted steering command. The latter is a newly proposed metric. Building on our results, we propose a new recurrent multimodal model. The suggested model has been tested on a custom dataset recorded by BMW, as well as the public dataset provided by Udacity. Results show that it outperforms previously released scores. Further, a steering correction concept from off-lane driving through the inclusion of correction frames is presented. We show that our suggestion leads to promising results empirically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
端到端网络中的多模态时空信息用于汽车转向预测
我们使用车载摄像头的视觉输入数据研究端到端转向问题。对空间、时空和多模态模型进行了实证比较,从两个评价点评估每个概念的表现。首先,模型在预测和模仿现实驾驶员的行为方面有多接近,其次,预测的转向命令的平稳性。后者是一个新提出的度量标准。基于我们的结果,我们提出了一个新的循环多模态模型。建议的模型已经在BMW记录的定制数据集以及Udacity提供的公共数据集上进行了测试。结果显示,它比以前发布的分数要好。在此基础上,提出了一种包含校正框架的偏离车道驾驶转向校正概念。实证结果表明,我们的建议具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1