Jun Lyu, Qin Su, Jinhui Liu, Lin Chen, Jiawei Sun, Wenqing Zhang
{"title":"Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)","authors":"Jun Lyu, Qin Su, Jinhui Liu, Lin Chen, Jiawei Sun, Wenqing Zhang","doi":"10.1631/jzus.B2101090","DOIUrl":null,"url":null,"abstract":"PiggyBac is a transposable DNA element originally discovered in the cabbage looper moth (Trichoplusia ni). The T. ni piggyBac transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous piggyBac-like elements (PLEs) is important before using piggyBac, because they may influence the genetic stability of transgenic lines. Herein, we conducted a genome-wide analysis of PLEs in the brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), and identified a total of 28 PLE sequences. All N. lugens piggyBac-like elements (NlPLEs) were present as multiple copies in the genome of BPH. Among the identified NlPLEs, NlPLE25 had the highest copy number and it was distributed on five chromosomes. The full length of NlPLE25 consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, NlPLE25 transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the NlPLE25 transposon and the piggyBac transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"27 1","pages":"515 - 527"},"PeriodicalIF":4.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2101090","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
PiggyBac is a transposable DNA element originally discovered in the cabbage looper moth (Trichoplusia ni). The T. ni piggyBac transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous piggyBac-like elements (PLEs) is important before using piggyBac, because they may influence the genetic stability of transgenic lines. Herein, we conducted a genome-wide analysis of PLEs in the brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), and identified a total of 28 PLE sequences. All N. lugens piggyBac-like elements (NlPLEs) were present as multiple copies in the genome of BPH. Among the identified NlPLEs, NlPLE25 had the highest copy number and it was distributed on five chromosomes. The full length of NlPLE25 consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, NlPLE25 transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the NlPLE25 transposon and the piggyBac transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.
期刊介绍:
Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community.
JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.