Detection and Classification of Defects in XLPE Power Cable Insulation via Machine Learning Algorithms

M. Saleh, S. Refaat, S. Khatri, A. Ghrayeb
{"title":"Detection and Classification of Defects in XLPE Power Cable Insulation via Machine Learning Algorithms","authors":"M. Saleh, S. Refaat, S. Khatri, A. Ghrayeb","doi":"10.1109/SGRE53517.2022.9774113","DOIUrl":null,"url":null,"abstract":"Due to high electric stresses in power equipment, insulation degradation has been prevalent as a result of increased PD exposure. In this paper, we study different machine learning (ML) methods for the detection and classification of partial discharges (PDs) for assessing the reliability of insulation systems. We introduce and examine a set of features using selected machine learning-based algorithms. The aim is to detect and classify PDs transpiring within insulation systems. Therefore, this paper presents tools to detect defects using suitable PD sensors and Machine Learning algorithms to facilitate diagnostics and enhance isolation system design. Experiments are being conducted on several voids in the insulator with varying shapes and sizes. A PD sensor is used for detecting the PDs taking place. Due to the presence of noise and other external interferences, appropriate filters and denoising methods are implemented. After that, the relevant PD features, such as the PD magnitude, PD repetition rate, statistical features, wavelet features, etc., are extracted. This study attempts to emphasize the importance of classifying the type of defect, as this will allow engineers to determine the severity of the fault taking place, and take the proper countermeasures.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"56 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/SGRE53517.2022.9774113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to high electric stresses in power equipment, insulation degradation has been prevalent as a result of increased PD exposure. In this paper, we study different machine learning (ML) methods for the detection and classification of partial discharges (PDs) for assessing the reliability of insulation systems. We introduce and examine a set of features using selected machine learning-based algorithms. The aim is to detect and classify PDs transpiring within insulation systems. Therefore, this paper presents tools to detect defects using suitable PD sensors and Machine Learning algorithms to facilitate diagnostics and enhance isolation system design. Experiments are being conducted on several voids in the insulator with varying shapes and sizes. A PD sensor is used for detecting the PDs taking place. Due to the presence of noise and other external interferences, appropriate filters and denoising methods are implemented. After that, the relevant PD features, such as the PD magnitude, PD repetition rate, statistical features, wavelet features, etc., are extracted. This study attempts to emphasize the importance of classifying the type of defect, as this will allow engineers to determine the severity of the fault taking place, and take the proper countermeasures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习算法的XLPE电力电缆绝缘缺陷检测与分类
由于电力设备中的高电应力,由于PD暴露增加,绝缘退化已经普遍存在。在本文中,我们研究了不同的机器学习(ML)方法来检测和分类局部放电(pd),以评估绝缘系统的可靠性。我们使用选择的基于机器学习的算法介绍和检查一组特征。目的是检测和分类在绝缘系统内发生的pd。因此,本文提出了使用合适的PD传感器和机器学习算法来检测缺陷的工具,以促进诊断和增强隔离系统设计。正在对绝缘体中不同形状和大小的几个空隙进行实验。PD传感器用于检测PD的发生。由于存在噪声和其他外部干扰,采用了适当的滤波和去噪方法。然后提取相关的PD特征,如PD幅度、PD重复率、统计特征、小波特征等。本研究试图强调对缺陷类型进行分类的重要性,因为这将使工程师能够确定发生故障的严重程度,并采取适当的对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
307
期刊最新文献
Experimental Investigations of the Effects of Secondary Air Injection on Gaseous Emission Profiles (NOx, NO, NO2, CO) and Hydrocarbons (CxHx) in Cookstoves Using Charcoal from Eucalyptus glandis Microgrid Optimal Scheduling Carbon and Water Footprint Evaluation of 120Wp Rural Household Photovoltaic System: Case Study Performance of the Boost Chopper, Comparative Study between PI Control and Neural Control to Regulate Its Output Voltage An Energy Production System Powered by Solar Heat with Biogas Dry Reforming Reactor and Solid Oxide Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1