{"title":"Study on fatigue strength of SnSb11Cu6 babbitt-steel bimetal sliding bearing material prepared by MIG brazing","authors":"Xinbo Wang, Z. Yin, Yonghong Chen","doi":"10.1051/meca/2019075","DOIUrl":null,"url":null,"abstract":"The babbitt-steel bimetal sliding bearing material prepared by the MIG brazing has been applied in many fields. In the application, usually only the bonding force is tested, and the fatigue strength is not evaluated. For this reason, this study referred to the test method for the fatigue strength of bearing materials of internal combustion engines, used the sapphire test machine (Dana Glacier Vandervell Bearings, UK) to inspect the SnSb11Cu6 babbitt-steel bimetal material prepared by MIG brazing, and analyzed the test results in depth. The test results show that, the fatigue strength of the bimetal material is more than 40 MPa. In comparison, according to the same test method and conditions on the same sapphire test machine, the fatigue strength of the SnSb11Cu6 babbitt-steel bimetal bearing material obtained by the centrifugal casting method after optimizing process was usually around 35 MPa. Therefore, the MIG brazing could produce higher fatigue strength for SnSb11Cu6 babbitt-steel bimetal bearing material. In addition, in this study, the process of fatigue failure was usually that after the microcracks were generated on the surface, they expanded to the inside of the lining, thereby resulting in spalling. This study has guiding significance for engineering practice and scientific research.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"74 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2019075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
Abstract
The babbitt-steel bimetal sliding bearing material prepared by the MIG brazing has been applied in many fields. In the application, usually only the bonding force is tested, and the fatigue strength is not evaluated. For this reason, this study referred to the test method for the fatigue strength of bearing materials of internal combustion engines, used the sapphire test machine (Dana Glacier Vandervell Bearings, UK) to inspect the SnSb11Cu6 babbitt-steel bimetal material prepared by MIG brazing, and analyzed the test results in depth. The test results show that, the fatigue strength of the bimetal material is more than 40 MPa. In comparison, according to the same test method and conditions on the same sapphire test machine, the fatigue strength of the SnSb11Cu6 babbitt-steel bimetal bearing material obtained by the centrifugal casting method after optimizing process was usually around 35 MPa. Therefore, the MIG brazing could produce higher fatigue strength for SnSb11Cu6 babbitt-steel bimetal bearing material. In addition, in this study, the process of fatigue failure was usually that after the microcracks were generated on the surface, they expanded to the inside of the lining, thereby resulting in spalling. This study has guiding significance for engineering practice and scientific research.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.