Estimating Air Temperature using Land Surface Temperature products of INSAT-3D satellite

Nirag Doshi, Tejas Turakhia, A. Nair, M. Pandya, Rajesh C. Iyer
{"title":"Estimating Air Temperature using Land Surface Temperature products of INSAT-3D satellite","authors":"Nirag Doshi, Tejas Turakhia, A. Nair, M. Pandya, Rajesh C. Iyer","doi":"10.1109/InGARSS48198.2020.9358919","DOIUrl":null,"url":null,"abstract":"Air Surface Temperature (Tair) available from meteorological stations, provides only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of Tair at both regional and global scales. A study has been carried out to understand the relationship between Land Surface Temperature (LST), available from INSAT 3D, and Tair, available from ground meteorological station. The result shows good correlation for winter season but it keeps reducing as we move towards monsoon probably due to increase in the extreme temperature and data unavailability. We also observed low root mean square error (RMSE) of ~1.5 °C for months of winter season while it increases to ~4.5 °C in June. We conclude that there is a good agreement between LST and air temperature, although the two temperatures have different physical meaning and responses to atmospheric conditions.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"74 1","pages":"177-180"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air Surface Temperature (Tair) available from meteorological stations, provides only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of Tair at both regional and global scales. A study has been carried out to understand the relationship between Land Surface Temperature (LST), available from INSAT 3D, and Tair, available from ground meteorological station. The result shows good correlation for winter season but it keeps reducing as we move towards monsoon probably due to increase in the extreme temperature and data unavailability. We also observed low root mean square error (RMSE) of ~1.5 °C for months of winter season while it increases to ~4.5 °C in June. We conclude that there is a good agreement between LST and air temperature, although the two temperatures have different physical meaning and responses to atmospheric conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用INSAT-3D卫星地表温度产品估算气温
从气象站获得的空气表面温度(Tair)只能提供有关广大地区空间格局的有限信息。使用遥感数据可以帮助克服这一问题,特别是在站点密度低的地区,有可能在区域和全球尺度上改进对Tair的估计。为了了解INSAT 3D提供的地表温度(LST)与地面气象站提供的Tair之间的关系,开展了一项研究。结果显示,与冬季的相关性很好,但随着我们走向季风,相关性不断降低,这可能是由于极端温度的增加和数据不可用。我们还观察到,冬季月份的均方根误差(RMSE)较低,为~1.5°C,而6月份则增加到~4.5°C。我们得出结论,尽管地表温度和大气温度具有不同的物理意义和对大气条件的响应,但两者之间存在很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1