Kernel-Based Centroid Neural Network with Spatial Constraints for Image Segmentation

Dong-Chul Park, Nhon Huu Tran, Dong-Min Woo, Yunsik Lee
{"title":"Kernel-Based Centroid Neural Network with Spatial Constraints for Image Segmentation","authors":"Dong-Chul Park, Nhon Huu Tran, Dong-Min Woo, Yunsik Lee","doi":"10.1109/ICNC.2008.635","DOIUrl":null,"url":null,"abstract":"A kernel-based centroid neural network with spatial constraints (K-CNN-S) is proposed and presented in this paper. The proposed K-CNN-S is based on the centroid neural network (CNN) and also exploits advantages of the kernel method for mapping input data into a higher dimensional feature space. Furthermore, The K-CNN-S adopts the spatial constraints to reduce noise in images. The magnetic resonance image (MRI) segmentation is performed to illustrate the application of the proposed K-CNN-S algorithm. Experiments and results on MRI data from Internet brain segmentation repository (IBSR) demonstrate that image segmentation scheme based on the proposed K-CNN-S outperforms conventional algorithms including fuzzy c-means (FCM), kernel-based fuzzy c-mean (K-FCM), and kernel-based fuzzy c-mean with spatial constraints (K-FCM-S).","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"15 3 1","pages":"236-240"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A kernel-based centroid neural network with spatial constraints (K-CNN-S) is proposed and presented in this paper. The proposed K-CNN-S is based on the centroid neural network (CNN) and also exploits advantages of the kernel method for mapping input data into a higher dimensional feature space. Furthermore, The K-CNN-S adopts the spatial constraints to reduce noise in images. The magnetic resonance image (MRI) segmentation is performed to illustrate the application of the proposed K-CNN-S algorithm. Experiments and results on MRI data from Internet brain segmentation repository (IBSR) demonstrate that image segmentation scheme based on the proposed K-CNN-S outperforms conventional algorithms including fuzzy c-means (FCM), kernel-based fuzzy c-mean (K-FCM), and kernel-based fuzzy c-mean with spatial constraints (K-FCM-S).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间约束的核质心神经网络图像分割
提出了一种基于核的空间约束质心神经网络(K-CNN-S)。提出的K-CNN-S基于质心神经网络(CNN),并利用核方法的优点将输入数据映射到高维特征空间。此外,K-CNN-S采用空间约束来降低图像中的噪声。为了说明K-CNN-S算法的应用,进行了磁共振图像(MRI)分割。基于互联网脑分割库(IBSR)的MRI数据的实验和结果表明,基于K-CNN-S的图像分割方案优于传统的模糊c均值(FCM)、基于核的模糊c均值(K-FCM)和基于核的带空间约束的模糊c均值(K-FCM- s)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1