A Backpropagation Artificial Neural Network Approach for Loan Status Prediction

Gabrielle Jovanie Sitepu, E. S. Nugraha
{"title":"A Backpropagation Artificial Neural Network Approach for Loan Status Prediction","authors":"Gabrielle Jovanie Sitepu, E. S. Nugraha","doi":"10.15408/jti.v15i2.27006","DOIUrl":null,"url":null,"abstract":"Providing credit has become a main source of profit for financial and non-financial institutions. However, this transaction might lead into credit risk. This risk occurred if debtors unable to complete their obligations that will led loss for creditors.  It is necessity for company to create assessment in distinguishing eligible or non-eligible prospective customer. Artificial Neural Network (ANN) is introduced in solving this typical classification case. Furthermore, one of learning algorithm in ANN namely Backpropagation is able to minimizing error of output in order to receive accurate result. This research aims to form models that capable in classifying the loan status of applicants by utilizing historical data. The method developed in this research is Backpropagation with activation function is a sigmoid function. In addition, this research formed two data model for analyzed; with first data model is every variable given in dataset and for the second data model is the variables that influenced the loan acceptance. Backpropagation shows high performance with more or less data variables. The results of this research show that the both data model has highest accuracy of prediction is 94.37% while the lowest accuracy prediction is 80.28%.","PeriodicalId":52586,"journal":{"name":"Jurnal Sarjana Teknik Informatika","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sarjana Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v15i2.27006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Providing credit has become a main source of profit for financial and non-financial institutions. However, this transaction might lead into credit risk. This risk occurred if debtors unable to complete their obligations that will led loss for creditors.  It is necessity for company to create assessment in distinguishing eligible or non-eligible prospective customer. Artificial Neural Network (ANN) is introduced in solving this typical classification case. Furthermore, one of learning algorithm in ANN namely Backpropagation is able to minimizing error of output in order to receive accurate result. This research aims to form models that capable in classifying the loan status of applicants by utilizing historical data. The method developed in this research is Backpropagation with activation function is a sigmoid function. In addition, this research formed two data model for analyzed; with first data model is every variable given in dataset and for the second data model is the variables that influenced the loan acceptance. Backpropagation shows high performance with more or less data variables. The results of this research show that the both data model has highest accuracy of prediction is 94.37% while the lowest accuracy prediction is 80.28%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贷款状态预测的反向传播人工神经网络方法
提供信贷已成为金融和非金融机构的主要利润来源。然而,这种交易可能会导致信用风险。这种风险发生在债务人无法履行其义务时,这将导致债权人损失。公司有必要创建评估来区分合格或不合格的潜在客户。引入人工神经网络(ANN)来解决这一典型的分类案例。此外,人工神经网络中的一种学习算法即反向传播算法能够最小化输出误差以获得准确的结果。本研究旨在利用历史数据,形成能够对申请人贷款状态进行分类的模型。本研究提出的方法是激活函数为s型函数的反向传播方法。此外,本研究形成了两个数据模型进行分析;第一个数据模型是数据集中给出的每个变量,第二个数据模型是影响贷款接受的变量。在数据变量较多或较少的情况下,反向传播表现出较高的性能。研究结果表明,两种数据模型的最高预测精度为94.37%,最低预测精度为80.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Development of Intelligent Door Lock System for Room Management Using Multi Factor Authentication Development of Web-Based Rtikabdimas Application With a Rapid Unified Process Approach Real-Time Monitoring of Gas Fields: Prototype at Pt Gamma Energi Pratama Bogor Scrum Framework Implementation for Building an Application of Monitoring and Booking E-Bus Based on QRCode Iterative Dichotomiser Three (Id3) Algorithm For Classification Community of Productive and Non-Productive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1