Automation of a procedure to find the polynomial which best fits (κ, c1, c2, T) data of electrolyte solutions by non-linear regression analysis using mathematica® software

E Cortazar, A Usobiaga, L.A Fernández, A de Diego, J.M Madariaga
{"title":"Automation of a procedure to find the polynomial which best fits (κ, c1, c2, T) data of electrolyte solutions by non-linear regression analysis using mathematica® software","authors":"E Cortazar,&nbsp;A Usobiaga,&nbsp;L.A Fernández,&nbsp;A de Diego,&nbsp;J.M Madariaga","doi":"10.1016/S0097-8485(01)00115-2","DOIUrl":null,"url":null,"abstract":"<div><p>A <span>mathematica</span>® package, ‘<span>condu.m’</span>, has been developed to find the polynomial in concentration and temperature which best fits conductimetric data of the type (<em>κ</em>, <em>c</em>, <em>T</em>) or (<em>κ</em>, <em>c</em><sub>1</sub>, <em>c</em><sub>2</sub>, <em>T</em>) of electrolyte solutions (<em>κ</em>: specific conductivity; <em>c</em><sub><em>i</em></sub>: concentration of component <em>i</em>; <em>T</em>: temperature). In addition, an interface, ‘<span>tkondu’</span>, has been written in the TCL/Tk language to facilitate the use of <span>condu.m</span> by an operator not familiarised with <span>mathematica</span>®. All this software is available on line (<span>UPV/EHU, 2001</span>). ‘<span>condu.m</span>’ has been programmed to: (i) select the optimum grade in <em>c</em><sub>1</sub> and/or <em>c</em><sub>2</sub>; (ii) compare models with linear or quadratic terms in temperature; (iii) calculate the set of adjustable parameters which best fits data; (iv) simplify the model by elimination of ‘a priori’ included adjustable parameters which after the regression analysis result in low statistical significance; (v) facilitate the location of outlier data by graphical analysis of the residuals; and (vi) provide quantitative statistical information on the quality of the fit, allowing a critical comparison among different models. Due to the multiple options offered the software allows testing different conductivity models in a short time, even if a large set of conductivity data is being considered simultaneously. Then, the user can choose the best model making use of the graphical and statistical information provided in the output file. Although the program has been initially designed to treat conductimetric data, it can be also applied for processing data with similar structure, e.g. (<em>P</em>, <em>c</em>, <em>T</em>) or (<em>P</em>, <em>c</em><sub>1</sub>, <em>c</em><sub>2</sub>, <em>T</em>), being <em>P</em> any appropriate transport, physical or thermodynamic property.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 3","pages":"Pages 253-264"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00115-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A mathematica® package, ‘condu.m’, has been developed to find the polynomial in concentration and temperature which best fits conductimetric data of the type (κ, c, T) or (κ, c1, c2, T) of electrolyte solutions (κ: specific conductivity; ci: concentration of component i; T: temperature). In addition, an interface, ‘tkondu’, has been written in the TCL/Tk language to facilitate the use of condu.m by an operator not familiarised with mathematica®. All this software is available on line (UPV/EHU, 2001). ‘condu.m’ has been programmed to: (i) select the optimum grade in c1 and/or c2; (ii) compare models with linear or quadratic terms in temperature; (iii) calculate the set of adjustable parameters which best fits data; (iv) simplify the model by elimination of ‘a priori’ included adjustable parameters which after the regression analysis result in low statistical significance; (v) facilitate the location of outlier data by graphical analysis of the residuals; and (vi) provide quantitative statistical information on the quality of the fit, allowing a critical comparison among different models. Due to the multiple options offered the software allows testing different conductivity models in a short time, even if a large set of conductivity data is being considered simultaneously. Then, the user can choose the best model making use of the graphical and statistical information provided in the output file. Although the program has been initially designed to treat conductimetric data, it can be also applied for processing data with similar structure, e.g. (P, c, T) or (P, c1, c2, T), being P any appropriate transport, physical or thermodynamic property.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用mathematica®软件进行非线性回归分析,找到最适合电解质溶液(κ, c1, c2, T)数据的多项式程序的自动化
一个mathematica®软件包,' condu。m ',已经开发出最适合电解质溶液(κ:比电导率;κ:比电导率;Ci:组分i的浓度;T:温度)。此外,还用TCL/Tk语言编写了一个接口' tkondu ',以方便condu的使用。由不熟悉mathematica®的操作员操作。所有这些软件都可以在线获得(UPV/EHU, 2001)。“condu。M '已被编程为:(i)在c1和/或c2中选择最佳等级;比较温度线性项或二次项的模型;(iii)计算最适合数据的一组可调参数;(iv)通过剔除回归分析后统计显著性较低的“先验”可调参数来简化模型;(v)通过对残差进行图形化分析,方便找出离群数据;(vi)提供关于拟合质量的定量统计信息,允许在不同模型之间进行关键比较。由于提供了多种选项,该软件可以在短时间内测试不同的电导率模型,即使同时考虑大量的电导率数据。然后,用户可以利用输出文件中提供的图形和统计信息选择最佳模型。虽然该程序最初设计用于处理电导数据,但它也可以应用于处理具有类似结构的数据,例如(P, c, T)或(P, c1, c2, T), P为任何适当的传输,物理或热力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1