Efficient Nonparametric Estimation of Mixture Proportions

P. Hall, D. Titterington
{"title":"Efficient Nonparametric Estimation of Mixture Proportions","authors":"P. Hall, D. Titterington","doi":"10.1111/J.2517-6161.1984.TB01319.X","DOIUrl":null,"url":null,"abstract":"SUMMARY By constructing a sequence of multinomial approximations and related maximum likelihood estimators, we derive a Cramer-Rao lower bound for nonparametric estimators of the mixture proportions and thereby characterize asymptotically optimal estimators. For the case of the sampling model M2 of Hosmer (1973) it is shown that the sequence of maximum likelihood estimators, which can be obtained explicitly, is asymptotically optimal in this sense. The results hold true even when the multinomial approximations involve cells chosen adaptively, from the data, in a wellspecified way.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"32 1","pages":"465-473"},"PeriodicalIF":0.0000,"publicationDate":"1984-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1984.TB01319.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

SUMMARY By constructing a sequence of multinomial approximations and related maximum likelihood estimators, we derive a Cramer-Rao lower bound for nonparametric estimators of the mixture proportions and thereby characterize asymptotically optimal estimators. For the case of the sampling model M2 of Hosmer (1973) it is shown that the sequence of maximum likelihood estimators, which can be obtained explicitly, is asymptotically optimal in this sense. The results hold true even when the multinomial approximations involve cells chosen adaptively, from the data, in a wellspecified way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合比例的有效非参数估计
通过构造一系列多项逼近和相关的极大似然估计,我们导出了混合比例非参数估计的Cramer-Rao下界,从而表征了渐近最优估计。对于Hosmer(1973)的抽样模型M2,证明了在这个意义上,可以显式得到的极大似然估计量序列是渐近最优的。即使当多项近似涉及以一种明确的方式从数据中自适应地选择的细胞时,结果也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1