An efficient implementation of graph-based invariant set algorithm for constrained nonlinear dynamical systems

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2022-08-01 DOI:10.1016/j.compchemeng.2022.107906
Benjamin Decardi-Nelson, Jinfeng Liu
{"title":"An efficient implementation of graph-based invariant set algorithm for constrained nonlinear dynamical systems","authors":"Benjamin Decardi-Nelson,&nbsp;Jinfeng Liu","doi":"10.1016/j.compchemeng.2022.107906","DOIUrl":null,"url":null,"abstract":"<div><p><span>The graph-based invariant set (GIS) algorithm is a promising set-based technique for computing the largest (with respect to inclusion) control invariant set of general discrete-time nonlinear dynamical systems. However, like other invariant set algorithms for </span>nonlinear systems, the GIS algorithm may require a lot of resources when computing the control invariant set. This limits its applicability to higher dimensional systems. In this work, we present an improved and efficient implementation of the GIS algorithm for general discrete-time controlled nonlinear systems. We first identify the bottlenecks through extensive analysis, and then provide remedial procedures to improve the implementation of the GIS algorithm. Specifically, we developed an adaptive subdivision scheme using a supervised machine learning-based algorithm to reduce the cell growth rate and parallelize the graph construction step. We extensively demonstrate the performance of the improved GIS algorithm using a numerical example and compare the result to that of the standard GIS algorithm. The results show that the adaptive subdivision and the parallelization improved the speed of the algorithm by about 8x and 3x respectively, that of the standard GIS algorithm.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"164 ","pages":"Article 107906"},"PeriodicalIF":3.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135422002447","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

The graph-based invariant set (GIS) algorithm is a promising set-based technique for computing the largest (with respect to inclusion) control invariant set of general discrete-time nonlinear dynamical systems. However, like other invariant set algorithms for nonlinear systems, the GIS algorithm may require a lot of resources when computing the control invariant set. This limits its applicability to higher dimensional systems. In this work, we present an improved and efficient implementation of the GIS algorithm for general discrete-time controlled nonlinear systems. We first identify the bottlenecks through extensive analysis, and then provide remedial procedures to improve the implementation of the GIS algorithm. Specifically, we developed an adaptive subdivision scheme using a supervised machine learning-based algorithm to reduce the cell growth rate and parallelize the graph construction step. We extensively demonstrate the performance of the improved GIS algorithm using a numerical example and compare the result to that of the standard GIS algorithm. The results show that the adaptive subdivision and the parallelization improved the speed of the algorithm by about 8x and 3x respectively, that of the standard GIS algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束非线性动力系统中基于图的不变集算法的有效实现
基于图的不变量集(GIS)算法是一种很有前途的基于集的技术,用于计算一般离散非线性动力系统的最大控制不变量集(相对于包含)。然而,与其他非线性系统的不变量集算法一样,GIS算法在计算控制不变量集时可能需要大量的资源。这限制了它在高维系统中的适用性。在这项工作中,我们提出了一种改进的、有效的GIS算法,用于一般离散时间控制的非线性系统。我们首先通过广泛的分析确定瓶颈,然后提供补救程序来改进GIS算法的实施。具体来说,我们使用基于监督机器学习的算法开发了一种自适应细分方案,以降低细胞生长速度并并行化图构建步骤。我们通过一个数值例子广泛地展示了改进的GIS算法的性能,并将结果与标准GIS算法的结果进行了比较。结果表明,自适应细分和并行化将算法的速度分别提高了标准GIS算法的8倍和3倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
YANNs: Y-wise affine neural networks for exact and efficient representations of piecewise linear functions Unlocking reactive power potential of industrial processes for voltage support through scheduling optimization Superstructure modeling and optimization of dynamic processes applied to high-performance liquid chromatography with recycling Partial least-squares model adaptation by bootstrap resampling PSFCL: A Probabilistic Slow Feature Contrastive Learning approach for incipient fault diagnosis in industrial processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1