Using Kiln Dust to Improve Weak Subgrades for Pavement Construction: A Field Verification in Michigan, USA

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-04-11 DOI:10.3390/geotechnics3020011
N. Bandara, H. Hettiarachchi, E. Jensen, T. Binoy, R. Perera
{"title":"Using Kiln Dust to Improve Weak Subgrades for Pavement Construction: A Field Verification in Michigan, USA","authors":"N. Bandara, H. Hettiarachchi, E. Jensen, T. Binoy, R. Perera","doi":"10.3390/geotechnics3020011","DOIUrl":null,"url":null,"abstract":"Remove-and-replace with suitable material has been the primary solution used for improving subgrades in Michigan, USA, when weak subgrades are encountered in road construction. Considering the large extent of silty and clayey soils found in southeastern Michigan, where much of the population and the roads are located within the state, the earthwork associated with this solution is massive and expensive. The use of cement kiln dust (CKD) or lime kiln dust (LKD) as a subgrade stabilizer can be a cost-effective solution if there is sufficient evidence to prove that such stabilization is suitable for the soils and the climate in southeastern Michigan. This became the subject of a field and laboratory investigation carried out in Michigan and sponsored by the Michigan Department of Transportation. The findings from the laboratory portion of this research (which were published in a separate manuscript) proved CKD’s suitability for long-term stabilization and LKD’s capacity for being a stabilizer for short-term modifications of clayey soils found in southeastern Michigan. This study covers the field testing portion of this investigation. Two CKD-stabilized and another two LKD-stabilized subgrades, which were already in use for 4–6 years, were tested for strength, using dynamic cone penetration (DCP) tests. The California bearing ratios estimated from the DCP tests showed that the CKD-stabilized and LKD-stabilized subgrades could offer strength gains as high as 200–515% and 149–257% compared to in situ soils, respectively, even after 4–6 years in use.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"99 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Remove-and-replace with suitable material has been the primary solution used for improving subgrades in Michigan, USA, when weak subgrades are encountered in road construction. Considering the large extent of silty and clayey soils found in southeastern Michigan, where much of the population and the roads are located within the state, the earthwork associated with this solution is massive and expensive. The use of cement kiln dust (CKD) or lime kiln dust (LKD) as a subgrade stabilizer can be a cost-effective solution if there is sufficient evidence to prove that such stabilization is suitable for the soils and the climate in southeastern Michigan. This became the subject of a field and laboratory investigation carried out in Michigan and sponsored by the Michigan Department of Transportation. The findings from the laboratory portion of this research (which were published in a separate manuscript) proved CKD’s suitability for long-term stabilization and LKD’s capacity for being a stabilizer for short-term modifications of clayey soils found in southeastern Michigan. This study covers the field testing portion of this investigation. Two CKD-stabilized and another two LKD-stabilized subgrades, which were already in use for 4–6 years, were tested for strength, using dynamic cone penetration (DCP) tests. The California bearing ratios estimated from the DCP tests showed that the CKD-stabilized and LKD-stabilized subgrades could offer strength gains as high as 200–515% and 149–257% compared to in situ soils, respectively, even after 4–6 years in use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用窑尘改善路面施工软弱路基:美国密歇根州的现场验证
在美国密歇根州,当道路施工中遇到软弱路基时,用合适的材料进行拆除和更换是改善路基的主要解决方案。考虑到密歇根州东南部发现的大量粉质和粘性土壤,那里的大部分人口和道路都位于该州境内,与此解决方案相关的土方工程是巨大而昂贵的。如果有足够的证据证明这种稳定剂适合密歇根州东南部的土壤和气候,那么使用水泥窑粉尘(CKD)或石灰窑粉尘(LKD)作为路基稳定剂可能是一种具有成本效益的解决方案。这成为了在密歇根州进行的实地和实验室调查的主题,并由密歇根州交通部赞助。本研究的实验室部分的研究结果(发表在单独的手稿中)证明了CKD对长期稳定的适用性,以及LKD作为密歇根州东南部粘土短期改性的稳定剂的能力。本研究涵盖了本次调查的现场测试部分。两个ckd稳定和另外两个lkd稳定的路基已经使用了4-6年,使用动态锥贯(DCP)测试了强度。从DCP试验中估计的加州承载比表明,即使经过4-6年的使用,ckd稳定和lkd稳定的路基与原位土壤相比,强度增益分别高达200-515%和149-257%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1