Arbiter

Julian Zucker, Myraeka d'Leeuwen
{"title":"Arbiter","authors":"Julian Zucker, Myraeka d'Leeuwen","doi":"10.1145/3375627.3375858","DOIUrl":null,"url":null,"abstract":"The widespread deployment of machine learning models in high- stakes decision making scenarios requires a code of ethics for machine learning practitioners. We identify four of the primary components required for the ethical practice of machine learn- ing: transparency, fairness, accountability, and reproducibility. We introduce Arbiter, a domain-specific programming language for machine learning practitioners that is designed for ethical machine learning. Arbiter provides a notation for recording how machine learning models will be trained, and we show how this notation can encourage the four described components of ethical machine learning.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The widespread deployment of machine learning models in high- stakes decision making scenarios requires a code of ethics for machine learning practitioners. We identify four of the primary components required for the ethical practice of machine learn- ing: transparency, fairness, accountability, and reproducibility. We introduce Arbiter, a domain-specific programming language for machine learning practitioners that is designed for ethical machine learning. Arbiter provides a notation for recording how machine learning models will be trained, and we show how this notation can encourage the four described components of ethical machine learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仲裁者
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bias in Artificial Intelligence Models in Financial Services Privacy Preserving Machine Learning Systems AIES '22: AAAI/ACM Conference on AI, Ethics, and Society, Oxford, United Kingdom, May 19 - 21, 2021 To Scale: The Universalist and Imperialist Narrative of Big Tech AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1