An automatic feature selection and classification framework for analyzing ultrasound kidney images using dragonfly algorithm and random forest classifier
{"title":"An automatic feature selection and classification framework for analyzing ultrasound kidney images using dragonfly algorithm and random forest classifier","authors":"C. Venkata Narasimhulu","doi":"10.1049/IPR2.12179","DOIUrl":null,"url":null,"abstract":"In medical imaging, the automatic diagnosis of kidney carcinoma has become more diffi-cult because it is not easy to detect by physicians. Pre-processing is the first identification method to enhance image quality, remove noise and unwanted components from the back-drop of the kidneys image. The pre-processing method is essential and significant for the proposed algorithm. The objective of this analysis is to recognize and classify kidney dis-turbances with an ultrasound scan by providing a number of substantial content description parameters. The ultrasound pictures are prepared to protect the interest pixels before extracting the feature. A series of quantitative features were synthesized of each images, the principal component analysis was conducted for minimizing the number of features to produce set of wavelet-based multi-scale features. Dragonfly algorithm (DFA) was exe-cuted in this method. In the proposed work, the design and training of a random decision forest classifier and selected features are implemented. The classification of e-health information using ideal characteristics is used by the RF classifier. The proposed technique is activated in MATLAB/simulink work site and the experimental results show that the peak accuracy of the proposed technique is 95.6% using GWO-FFBN techniques compared to other existing techniques.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"8 1","pages":"2080-2096"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IPR2.12179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In medical imaging, the automatic diagnosis of kidney carcinoma has become more diffi-cult because it is not easy to detect by physicians. Pre-processing is the first identification method to enhance image quality, remove noise and unwanted components from the back-drop of the kidneys image. The pre-processing method is essential and significant for the proposed algorithm. The objective of this analysis is to recognize and classify kidney dis-turbances with an ultrasound scan by providing a number of substantial content description parameters. The ultrasound pictures are prepared to protect the interest pixels before extracting the feature. A series of quantitative features were synthesized of each images, the principal component analysis was conducted for minimizing the number of features to produce set of wavelet-based multi-scale features. Dragonfly algorithm (DFA) was exe-cuted in this method. In the proposed work, the design and training of a random decision forest classifier and selected features are implemented. The classification of e-health information using ideal characteristics is used by the RF classifier. The proposed technique is activated in MATLAB/simulink work site and the experimental results show that the peak accuracy of the proposed technique is 95.6% using GWO-FFBN techniques compared to other existing techniques.