How well do local algorithms solve semidefinite programs?

Z. Fan, A. Montanari
{"title":"How well do local algorithms solve semidefinite programs?","authors":"Z. Fan, A. Montanari","doi":"10.1145/3055399.3055451","DOIUrl":null,"url":null,"abstract":"Several probabilistic models from high-dimensional statistics and machine learning reveal an intriguing and yet poorly understood dichotomy. Either simple local algorithms succeed in estimating the object of interest, or even sophisticated semi-definite programming (SDP) relaxations fail. In order to explore this phenomenon, we study a classical SDP relaxation of the minimum graph bisection problem, when applied to Erdos-Renyi random graphs with bounded average degree d > 1, and obtain several types of results. First, we use a dual witness construction (using the so-called non-backtracking matrix of the graph) to upper bound the SDP value. Second, we prove that a simple local algorithm approximately solves the SDP to within a factor 2d^2/(2d^2 + d - 1) of the upper bound. In particular, the local algorithm is at most 8/9 suboptimal, and 1 + O(d^-1) suboptimal for large degree. We then analyze a more sophisticated local algorithm, which aggregates information according to the harmonic measure on the limiting Galton-Watson (GW) tree. The resulting lower bound is expressed in terms of the conductance of the GW tree and matches surprisingly well the empirically determined SDP values on large-scale Erdos-Renyi graphs. We finally consider the planted partition model. In this case, purely local algorithms are known to fail, but they do succeed if a small amount of side information is available. Our results imply quantitative bounds on the threshold for partial recovery using SDP in this model.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Several probabilistic models from high-dimensional statistics and machine learning reveal an intriguing and yet poorly understood dichotomy. Either simple local algorithms succeed in estimating the object of interest, or even sophisticated semi-definite programming (SDP) relaxations fail. In order to explore this phenomenon, we study a classical SDP relaxation of the minimum graph bisection problem, when applied to Erdos-Renyi random graphs with bounded average degree d > 1, and obtain several types of results. First, we use a dual witness construction (using the so-called non-backtracking matrix of the graph) to upper bound the SDP value. Second, we prove that a simple local algorithm approximately solves the SDP to within a factor 2d^2/(2d^2 + d - 1) of the upper bound. In particular, the local algorithm is at most 8/9 suboptimal, and 1 + O(d^-1) suboptimal for large degree. We then analyze a more sophisticated local algorithm, which aggregates information according to the harmonic measure on the limiting Galton-Watson (GW) tree. The resulting lower bound is expressed in terms of the conductance of the GW tree and matches surprisingly well the empirically determined SDP values on large-scale Erdos-Renyi graphs. We finally consider the planted partition model. In this case, purely local algorithms are known to fail, but they do succeed if a small amount of side information is available. Our results imply quantitative bounds on the threshold for partial recovery using SDP in this model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部算法解决半定程序的效果如何?
来自高维统计和机器学习的几个概率模型揭示了一个有趣但却鲜为人知的二分法。简单的局部算法要么能成功地估计目标,要么甚至复杂的半确定规划(SDP)松弛也会失败。为了探讨这一现象,我们研究了最小图二分问题的经典SDP松弛问题,并将其应用于平均度d > 1的Erdos-Renyi随机图,得到了几种结果。首先,我们使用对偶见证构造(使用所谓的图的非回溯矩阵)来上界SDP值。其次,我们证明了一种简单的局部算法近似求解SDP到上界的一个因子2d^2/(2d^2 + d - 1)内。特别是,局部算法最多为8/9次优,大程度时为1 + O(d^-1)次优。然后,我们分析了一种更复杂的局部算法,该算法根据限制高尔顿-沃森(GW)树上的谐波测度聚合信息。所得下界用GW树的电导表示,与大规模Erdos-Renyi图上经验确定的SDP值惊人地匹配。最后考虑种植分区模型。在这种情况下,纯粹的局部算法是失败的,但如果有少量的辅助信息可用,它们确实会成功。我们的结果暗示了在该模型中使用SDP部分恢复的阈值的定量界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online service with delay A simpler and faster strongly polynomial algorithm for generalized flow maximization Low rank approximation with entrywise l1-norm error Fast convergence of learning in games (invited talk) Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed Steiner tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1