Motion detection with spatiotemporal sequences

T. Zhang, Haixian Wang
{"title":"Motion detection with spatiotemporal sequences","authors":"T. Zhang, Haixian Wang","doi":"10.1109/ICASSP.2014.6854422","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new method to detect motion in a greyscale video. In our algorithm, several spatiotemporal sequences with different lengths are used to filter the frames in the video. Then these filtered images are combined together to get the real motion. The performance of our algorithm is tested with several human action datasets in which different actions are performed. The detected results of our algorithm are compared with previous works and the targets we extract manually. The experimental results show that the responses of our filter are close to the real action of the human in the original video.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"4344-4348"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a new method to detect motion in a greyscale video. In our algorithm, several spatiotemporal sequences with different lengths are used to filter the frames in the video. Then these filtered images are combined together to get the real motion. The performance of our algorithm is tested with several human action datasets in which different actions are performed. The detected results of our algorithm are compared with previous works and the targets we extract manually. The experimental results show that the responses of our filter are close to the real action of the human in the original video.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空序列的运动检测
本文提出了一种新的灰度视频运动检测方法。在我们的算法中,使用多个不同长度的时空序列来过滤视频中的帧。然后将这些过滤后的图像组合在一起,得到真实的运动。我们的算法的性能用几个人类动作数据集进行了测试,其中执行了不同的动作。将本文算法的检测结果与前人的工作以及人工提取的目标进行了比较。实验结果表明,该滤波器的响应接近原始视频中人的真实动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1