COMPRESSED SENSING DOA ESTIMATION IN THE PRESENCE OF UNKNOWN NOISE

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy Progress in Electromagnetics Research-Pier Pub Date : 2020-01-01 DOI:10.2528/pierc20031204
A. A. Salama, M. Ahmad, M. Swamy
{"title":"COMPRESSED SENSING DOA ESTIMATION IN THE PRESENCE OF UNKNOWN NOISE","authors":"A. A. Salama, M. Ahmad, M. Swamy","doi":"10.2528/pierc20031204","DOIUrl":null,"url":null,"abstract":"A new compressive sensing-based direction of arrival (DOA) estimation technique for source signal detection in the presence of unknown noise, based on the generalized correlation decomposition (GCD) algorithm, is presented. The proposed algorithm does not depend on the singular value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA estimation can be done without an a priori knowledge of the number of sources. The proposed algorithm can estimate more sources than the number of physical sensors used without any constraints or assumptions about the nature of the signal sources. It can estimate coherent source signals as well as closely-spaced sources using a small number of snapshots.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"112 1","pages":"47-62"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/pierc20031204","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

Abstract

A new compressive sensing-based direction of arrival (DOA) estimation technique for source signal detection in the presence of unknown noise, based on the generalized correlation decomposition (GCD) algorithm, is presented. The proposed algorithm does not depend on the singular value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA estimation can be done without an a priori knowledge of the number of sources. The proposed algorithm can estimate more sources than the number of physical sensors used without any constraints or assumptions about the nature of the signal sources. It can estimate coherent source signals as well as closely-spaced sources using a small number of snapshots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在未知噪声的压缩感知doa估计
提出了一种基于广义相关分解(GCD)算法的基于压缩感知的未知噪声源信号到达方向估计技术。该算法不依赖于奇异值分解,也不依赖于信号与噪声子空间的正交性。因此,不需要先验地知道源的数量就可以进行DOA估计。所提出的算法可以估计比使用的物理传感器数量更多的信号源,而不需要对信号源的性质进行任何约束或假设。它可以估计相干源信号以及使用少量快照的近间隔源信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
期刊最新文献
L-BAND RADAR SCATTERING AND SOIL MOISTURE RETRIEVAL OF WHEAT, CANOLA AND PASTURE FIELDS FOR SMAP ACTIVE ALGORITHMS DESIGNING NANOINCLUSIONS FOR QUANTUM SENSING BASED ON ELECTROMAGNETIC SCATTERING FORMALISM (INVITED PAPER) A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures HIGH EFFICIENCY MULTI-FUNCTIONAL ALL-OPTICAL LOGIC GATES BASED ON MIM PLASMONIC WAVEGUIDE STRUCTURE WITH THE KERR-TYPE NONLINEAR NANO-RING RESONATORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1