Deteksi Objek Kereta Api menggunakan Metode Faster R-CNN dengan Arsitektur VGG 16

Jasman Pardede, Hendri Hardiansah
{"title":"Deteksi Objek Kereta Api menggunakan Metode Faster R-CNN dengan Arsitektur VGG 16","authors":"Jasman Pardede, Hendri Hardiansah","doi":"10.26760/mindjournal.v7i1.21-36","DOIUrl":null,"url":null,"abstract":"ABSTRAKKereta merupakan sebuah alat transportasi umum yang sering digunakan oleh masyarakat untuk berpergian dari kota asal ke kota tujuan. Mereka membutuhkan akan sarana transportasi umum untuk mempermudah aktifitas mereka. Namun kecelakaan di persimpangan jalan raya yang terlintasi oleh kereta api memiliki angka yang cukup besar akibat kelalaian dari petugas untuk menutup palang pintu kereta api. Maka dari itu penelitian ini dibuat agar mengetahui keberadaan kereta api berdasarkan jarak dan tingkat cahayanya dari siang sampai malam hari. Sistem dibangun menggunakan metode Faster RCNN dengan model arsitektur VGG16 untuk mengetahui keberadaan objek kereta api antara lokomotif dan gerbong berdasarkan tingkat cahaya dan jarak terhadap objek. Setelah dilakukan pengujian dengan jarak paling dekat ±2 meter sampai ±250 meter, diperoleh rata-rata akurasi untuk lokomotif sebesar 79,09%, dan akurasi untuk gerbong sebesar 97,05%. Sistem memperoleh keakurasian deteksi terhadap objek rata-rata akurasi deteksi objek lokomotif sebesar 86,40%, dan rata-rata akurasi deteksi objek gerbong sebesar 97,23%.Kata kunci: Deteksi Objek, Faster RCNN, VGG, Kereta Api, Jarak, LuxABSTRACTRailway is a public transportation that is often used by the public to travel from the home town to the destination city. They need public transportation to facilitate their activities. But accidents at the intersection of the highway crossed by the train has a considerable number due to the negligence of the officer to close the railway stopbars. Therefore, this study was made to know the existence of trains based on their distance and light level from day to night. The system was built using the Faster RCNN method with the VGG16 architectural model to determine the existence of railway objects between locomotives and carriages based on the level of light and distance to the object. After testing with the closest distance of ±2 meters to ±250 meters, obtained an average accuracy for locomotives of 79.09%, and accuracy for carriages of 97.05%. The system obtained accuracy of detection of objects with an average detection accuracy of locomotive objects of 86.40%, and an average detection accuracy of car objects of 97.23%.Keywords: Object Detection, Faster RCNN, VGG, Railway, Distance, Lux","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"38 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v7i1.21-36","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRAKKereta merupakan sebuah alat transportasi umum yang sering digunakan oleh masyarakat untuk berpergian dari kota asal ke kota tujuan. Mereka membutuhkan akan sarana transportasi umum untuk mempermudah aktifitas mereka. Namun kecelakaan di persimpangan jalan raya yang terlintasi oleh kereta api memiliki angka yang cukup besar akibat kelalaian dari petugas untuk menutup palang pintu kereta api. Maka dari itu penelitian ini dibuat agar mengetahui keberadaan kereta api berdasarkan jarak dan tingkat cahayanya dari siang sampai malam hari. Sistem dibangun menggunakan metode Faster RCNN dengan model arsitektur VGG16 untuk mengetahui keberadaan objek kereta api antara lokomotif dan gerbong berdasarkan tingkat cahaya dan jarak terhadap objek. Setelah dilakukan pengujian dengan jarak paling dekat ±2 meter sampai ±250 meter, diperoleh rata-rata akurasi untuk lokomotif sebesar 79,09%, dan akurasi untuk gerbong sebesar 97,05%. Sistem memperoleh keakurasian deteksi terhadap objek rata-rata akurasi deteksi objek lokomotif sebesar 86,40%, dan rata-rata akurasi deteksi objek gerbong sebesar 97,23%.Kata kunci: Deteksi Objek, Faster RCNN, VGG, Kereta Api, Jarak, LuxABSTRACTRailway is a public transportation that is often used by the public to travel from the home town to the destination city. They need public transportation to facilitate their activities. But accidents at the intersection of the highway crossed by the train has a considerable number due to the negligence of the officer to close the railway stopbars. Therefore, this study was made to know the existence of trains based on their distance and light level from day to night. The system was built using the Faster RCNN method with the VGG16 architectural model to determine the existence of railway objects between locomotives and carriages based on the level of light and distance to the object. After testing with the closest distance of ±2 meters to ±250 meters, obtained an average accuracy for locomotives of 79.09%, and accuracy for carriages of 97.05%. The system obtained accuracy of detection of objects with an average detection accuracy of locomotive objects of 86.40%, and an average detection accuracy of car objects of 97.23%.Keywords: Object Detection, Faster RCNN, VGG, Railway, Distance, Lux
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用VGG 16建筑,用更快的R-CNN方法探测火车物体
抽象是一种公共交通工具,人们经常用它从一个城镇旅行到另一个城镇。他们需要公共交通工具来放松他们的活动。但是铁路沿线发生的事故,其规模之大,是由于官员疏忽大意,未能堵住铁路的车门。因此,这项研究的目的是根据火车的距离和白天到晚上的照明水平来确定列车的位置。该系统使用最快捷的RCNN技术与VGG16建筑模型相匹配,根据可见光水平和距离了解机车和车厢之间的火车物体的位置。测试完毕后的距离最接近于获得±2米到±250米,平均准确率为79,09%大小,机车和准确度高达97,05%车厢。系统获得了机车物体检测准确率为86.40%,车厢内物体检测准确率为97.23%。关键词:探测对象,更快的RCNN, VGG,火车,距离,luxabstracroad是一种公共交通工具,被公众使用,从家乡旅行到目的地城市。他们需要公共交通以符合他们的动机。但是火车经过高速公路的中间发生了事故,官员关闭了铁路出口,考虑到了有号码。因此,这项研究是为了让人们知道火车从远方一直延伸到夜晚的存在。该系统采用更快的RCNN方法,用VGG16建筑模型来确定在光线和距离之间的铁路存在的目标。之后测试with the closest±2米到±250米的距离,获得的平均为locomotives评比79 . 09%,评比著作百科全书》为0。05%的carriages 97。系统计算了84.40%的目标locomotive勘探结果,以及97.23%的车辆准确检测。目标探测,更快的RCNN, VGG,铁路,远方,Lux
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
23
期刊最新文献
The Rough Tor Effect: early prehistoric monuments focusing on significant tors in Cornwall Apolline divination: hallucinogenic substances or cognitive inputs? The case of the laurel Performance theory: a growing interest in rock art research Archaeology at the intersection between cognitive neuroscience, performance theory, and architecture: from psychoactive substances to rock art and bone shelters Living inside a mammoth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1