Parameter Uncertainty for End-to-end Speech Recognition

Stefan Braun, Shih-Chii Liu
{"title":"Parameter Uncertainty for End-to-end Speech Recognition","authors":"Stefan Braun, Shih-Chii Liu","doi":"10.1109/ICASSP.2019.8683066","DOIUrl":null,"url":null,"abstract":"Recent work on neural networks with probabilistic parameters has shown that parameter uncertainty improves network regularization. Parameter-specific signal-to-noise ratio (SNR) levels derived from parameter distributions were further found to have high correlations with task importance. However, most of these studies focus on tasks other than automatic speech recognition (ASR). This work investigates end-to-end models with probabilistic parameters for ASR. We demonstrate that probabilistic networks outperform conventional deterministic networks in pruning and domain adaptation experiments carried out on the Wall Street Journal and CHiME-4 datasets. We use parameter-specific SNR information to select parameters for pruning and to condition the parameter updates during adaptation. Experimental results further show that networks with lower SNR parameters (1) tolerate increased sparsity levels during parameter pruning and (2) reduce catastrophic forgetting during domain adaptation.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"101 1","pages":"5636-5640"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Recent work on neural networks with probabilistic parameters has shown that parameter uncertainty improves network regularization. Parameter-specific signal-to-noise ratio (SNR) levels derived from parameter distributions were further found to have high correlations with task importance. However, most of these studies focus on tasks other than automatic speech recognition (ASR). This work investigates end-to-end models with probabilistic parameters for ASR. We demonstrate that probabilistic networks outperform conventional deterministic networks in pruning and domain adaptation experiments carried out on the Wall Street Journal and CHiME-4 datasets. We use parameter-specific SNR information to select parameters for pruning and to condition the parameter updates during adaptation. Experimental results further show that networks with lower SNR parameters (1) tolerate increased sparsity levels during parameter pruning and (2) reduce catastrophic forgetting during domain adaptation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
端到端语音识别的参数不确定性
最近对带有概率参数的神经网络的研究表明,参数的不确定性改善了网络的正则化。从参数分布得出的参数特定信噪比(SNR)水平进一步发现与任务重要性高度相关。然而,这些研究大多集中在自动语音识别(ASR)以外的任务上。这项工作研究了带有概率参数的端到端ASR模型。在华尔街日报和CHiME-4数据集上进行的修剪和域适应实验中,我们证明了概率网络优于传统的确定性网络。我们使用参数特定的信噪比信息来选择修剪参数,并在适应过程中调整参数更新。实验结果进一步表明,较低信噪比参数的网络(1)在参数修剪过程中可以容忍更高的稀疏度水平,(2)在域适应过程中可以减少灾难性遗忘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1