An ensemble feature method for food classification

N. Martinel, C. Micheloni, C. Piciarelli
{"title":"An ensemble feature method for food classification","authors":"N. Martinel, C. Micheloni, C. Piciarelli","doi":"10.22630/mgv.2017.26.1.2","DOIUrl":null,"url":null,"abstract":"In the last years, several works on automatic image-based food recognition have been proposed, often based on texture feature extraction and classification. However, there is still a lack of proper comparisons to evaluate which approaches are better suited for this specific task. In this work, we adopt a Random Forest classifier to measure the performances of different texture filter banks and feature encoding techniques on three different food image datasets. Comparative results are given to show the performance of each considered approach, as well as to compare the proposed Random Forest classifiers with other feature-based state-of-the-art solutions.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2017.26.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the last years, several works on automatic image-based food recognition have been proposed, often based on texture feature extraction and classification. However, there is still a lack of proper comparisons to evaluate which approaches are better suited for this specific task. In this work, we adopt a Random Forest classifier to measure the performances of different texture filter banks and feature encoding techniques on three different food image datasets. Comparative results are given to show the performance of each considered approach, as well as to compare the proposed Random Forest classifiers with other feature-based state-of-the-art solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
食品分类的集成特征方法
在过去的几年里,人们提出了一些基于图像的自动食物识别工作,通常是基于纹理特征提取和分类。然而,仍然缺乏适当的比较来评估哪种方法更适合于这一特定任务。在这项工作中,我们采用随机森林分类器来衡量不同纹理滤波器组和特征编码技术在三种不同食物图像数据集上的性能。给出了比较结果,以显示每种考虑的方法的性能,以及将所提出的随机森林分类器与其他基于特征的最先进的解决方案进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
期刊最新文献
Use of virtual reality to facilitate engineer training in the aerospace industry An efficient pedestrian attributes recognition system under challenging conditions Performance evaluation of Machine Learning models to predict heart attack Lung and colon cancer detection from CT images using Deep Learning Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1