Improved in vitro endothelialization on nanostructured titania with tannin/glycosaminoglycan-based polyelectrolyte multilayers.

In vitro models Pub Date : 2022-06-03 eCollection Date: 2022-06-01 DOI:10.1007/s44164-022-00024-x
Roberta M Sabino, Matt J Kipper, Alessandro F Martins, Ketul C Popat
{"title":"Improved in vitro endothelialization on nanostructured titania with tannin/glycosaminoglycan-based polyelectrolyte multilayers.","authors":"Roberta M Sabino, Matt J Kipper, Alessandro F Martins, Ketul C Popat","doi":"10.1007/s44164-022-00024-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Blood compatibility of cardiovascular implants is still a major concern. Rapid endothelialization of these implant surfaces has emerged as a promising strategy to enhance hemocompatibility and prevent complications such as thrombus formation and restenosis. The successful endothelialization of implant surfaces mostly depends on the migration of endothelial cells (ECs), the differentiation of stem cells, and the inhibition of smooth muscle cell (SMC) proliferation. Our previous study demonstrated that nanostructured titania surfaces modified with polyelectrolyte multilayers based on tanfloc (a cationic tannin derivative) and glycosaminoglycans (heparin and hyaluronic acid) have improved antithrombogenic properties.</p><p><strong>Methods: </strong>In this work, we used in vitro cell culture of ECs and SMCs to investigate the outcomes of these surface modifications on endothelialization. The cells were seeded on the surfaces, and their viability, adhesion, and proliferation were evaluated after 1, 3, and 5 days. Indirect immunofluorescent staining was used to determine the cellular expression of ECs through the presence of specific marker proteins after 7 and 10 days, and EC migration on the NT surfaces was also investigated.</p><p><strong>Results: </strong>The surfaces modified with tanfloc and heparin showed enhanced EC adhesion, proliferation, and migration. However, SMC proliferation is not promoted by the surfaces. Therefore, these surfaces may promote endothelialization without stimulating SMC proliferation, which could improve the hemocompatibility without enhancing the risk of SMC proliferation leading to restenosis.</p><p><strong>Conclusions: </strong>The surface modification here proposed is a promising candidate to be used in cardiovascular applications due to enhanced antithrombogenic and endothelialization properties.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"114 1","pages":"249-259"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00024-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Blood compatibility of cardiovascular implants is still a major concern. Rapid endothelialization of these implant surfaces has emerged as a promising strategy to enhance hemocompatibility and prevent complications such as thrombus formation and restenosis. The successful endothelialization of implant surfaces mostly depends on the migration of endothelial cells (ECs), the differentiation of stem cells, and the inhibition of smooth muscle cell (SMC) proliferation. Our previous study demonstrated that nanostructured titania surfaces modified with polyelectrolyte multilayers based on tanfloc (a cationic tannin derivative) and glycosaminoglycans (heparin and hyaluronic acid) have improved antithrombogenic properties.

Methods: In this work, we used in vitro cell culture of ECs and SMCs to investigate the outcomes of these surface modifications on endothelialization. The cells were seeded on the surfaces, and their viability, adhesion, and proliferation were evaluated after 1, 3, and 5 days. Indirect immunofluorescent staining was used to determine the cellular expression of ECs through the presence of specific marker proteins after 7 and 10 days, and EC migration on the NT surfaces was also investigated.

Results: The surfaces modified with tanfloc and heparin showed enhanced EC adhesion, proliferation, and migration. However, SMC proliferation is not promoted by the surfaces. Therefore, these surfaces may promote endothelialization without stimulating SMC proliferation, which could improve the hemocompatibility without enhancing the risk of SMC proliferation leading to restenosis.

Conclusions: The surface modification here proposed is a promising candidate to be used in cardiovascular applications due to enhanced antithrombogenic and endothelialization properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单宁/糖胺聚糖基聚电解质多层膜改善纳米结构二氧化钛的体外内皮化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1