METRICS FOR IMAGE SURFACE APPROXIMATION BASED ON TRIANGULAR MESHES

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2018-04-12 DOI:10.5566/IAS.1591
Eduardo Sant'Ana da Silva, Anderson Santos, H. Pedrini
{"title":"METRICS FOR IMAGE SURFACE APPROXIMATION BASED ON TRIANGULAR MESHES","authors":"Eduardo Sant'Ana da Silva, Anderson Santos, H. Pedrini","doi":"10.5566/IAS.1591","DOIUrl":null,"url":null,"abstract":"Surface approximation plays an important role in several application fields, such as computer-aided design, computer graphics, remote sensing, computer vision, robotics, architecture, and manufacturing. A common problem present in these areas is to develop efficient methods for generating, processing, analyzing, and visualizing large amount of 3D data. Triangular meshes constitute a flexible representation of sampled points that are not regularly distributed in space, such that the model can be adaptively adjusted to the data density. The choice of metrics for building the triangular meshes is crucial to produce high quality models. This paper proposes and evaluates different measures to incrementally refine a Delaunay triangular mesh for image surface approximation until either a certain accuracy is obtained or a maximum number of iterations is achieved. Experiments on several data sets are performed to compare the quality of the resulting meshes.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"49 1","pages":"71-82"},"PeriodicalIF":0.8000,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1591","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Surface approximation plays an important role in several application fields, such as computer-aided design, computer graphics, remote sensing, computer vision, robotics, architecture, and manufacturing. A common problem present in these areas is to develop efficient methods for generating, processing, analyzing, and visualizing large amount of 3D data. Triangular meshes constitute a flexible representation of sampled points that are not regularly distributed in space, such that the model can be adaptively adjusted to the data density. The choice of metrics for building the triangular meshes is crucial to produce high quality models. This paper proposes and evaluates different measures to incrementally refine a Delaunay triangular mesh for image surface approximation until either a certain accuracy is obtained or a maximum number of iterations is achieved. Experiments on several data sets are performed to compare the quality of the resulting meshes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三角网格的图像表面逼近度量
曲面逼近在计算机辅助设计、计算机图形学、遥感、计算机视觉、机器人、建筑和制造等多个应用领域发挥着重要作用。在这些领域中存在的一个共同问题是开发生成、处理、分析和可视化大量3D数据的有效方法。三角形网格构成了一个灵活的采样点的表示,这些采样点在空间上不是规则分布的,这样模型就可以自适应地调整数据密度。构建三角网格的度量选择对于生成高质量的模型至关重要。本文提出并评估了不同的方法来逐步改进Delaunay三角形网格用于图像表面逼近,直到获得一定的精度或达到最大迭代次数。在几个数据集上进行了实验,以比较所得网格的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1