{"title":"A computation-driven, energy-efficient and hybrid of microwave and conventional drying process for fast gooseberry candy production","authors":"Chanpreet Singh, N. Saluja, Rajeev Sharma","doi":"10.1080/08327823.2019.1677431","DOIUrl":null,"url":null,"abstract":"Abstract The health benefits of Indian gooseberry have resulted in a tremendous growth in its consumption in the form of tasty candy and marmalade prepared by drying process. The candy production process is limited by high drying time and plant size requirements as most of the processing production plants are equipped with conventional drying methods. Hence, the paper presents computational model defining relation between electric field pattern with heating and moisture diffusion in the product simultaneously. The boundary value applies on Maxwell’s equation solution as defined by gooseberry electrical properties. The solution to heat and mass transfer equation offers thermodynamic properties and profiles of gooseberry by microwave heating. The optimised process of moisture diffusion to the surface of gooseberry, followed by conventional heating, dries the sample uniformly and speeds up the process. The established relation offers a valid model for defining time for microwave and conventional heating of fresh gooseberry that takes it as an input and dries gooseberry candy as an output, thereby reducing the time of drying from 17 hours to 0.5 hour. The electromagnetic and thermodynamic results are obtained using simulation and are followed by experimental verification.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"114 1","pages":"259 - 275"},"PeriodicalIF":0.9000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2019.1677431","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract The health benefits of Indian gooseberry have resulted in a tremendous growth in its consumption in the form of tasty candy and marmalade prepared by drying process. The candy production process is limited by high drying time and plant size requirements as most of the processing production plants are equipped with conventional drying methods. Hence, the paper presents computational model defining relation between electric field pattern with heating and moisture diffusion in the product simultaneously. The boundary value applies on Maxwell’s equation solution as defined by gooseberry electrical properties. The solution to heat and mass transfer equation offers thermodynamic properties and profiles of gooseberry by microwave heating. The optimised process of moisture diffusion to the surface of gooseberry, followed by conventional heating, dries the sample uniformly and speeds up the process. The established relation offers a valid model for defining time for microwave and conventional heating of fresh gooseberry that takes it as an input and dries gooseberry candy as an output, thereby reducing the time of drying from 17 hours to 0.5 hour. The electromagnetic and thermodynamic results are obtained using simulation and are followed by experimental verification.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.