{"title":"Equilibrium Stage of Soil Cracking and Subsidence after Several Wetting and Drying Cycles","authors":"H. Nowamooz","doi":"10.3390/geotechnics3020012","DOIUrl":null,"url":null,"abstract":"This work investigates the equilibrium stage of the crack propagation of a fine-grained soil after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement, which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage crack area were determined by using the image processing method. For the cyclic experimental investigations, the shrinkage cracks were followed during six months of successive wetting and drying cycles for two samples (with two different initial water contents). These long-term tests were completed by some short term single drying path tests performed on samples prepared at different initial states. The results showed the existence of a unique equilibrium stage at the end of the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was separated into two parts: the reversible settlement of the equilibrium stage and the irreversible settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this equilibrium stage.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"118 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2
Abstract
This work investigates the equilibrium stage of the crack propagation of a fine-grained soil after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement, which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage crack area were determined by using the image processing method. For the cyclic experimental investigations, the shrinkage cracks were followed during six months of successive wetting and drying cycles for two samples (with two different initial water contents). These long-term tests were completed by some short term single drying path tests performed on samples prepared at different initial states. The results showed the existence of a unique equilibrium stage at the end of the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was separated into two parts: the reversible settlement of the equilibrium stage and the irreversible settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this equilibrium stage.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.