Convolutional neural network pruning to accelerate membrane segmentation in electron microscopy

J. Roels, Jonas De Vylder, J. Aelterman, Y. Saeys, W. Philips
{"title":"Convolutional neural network pruning to accelerate membrane segmentation in electron microscopy","authors":"J. Roels, Jonas De Vylder, J. Aelterman, Y. Saeys, W. Philips","doi":"10.1109/ISBI.2017.7950600","DOIUrl":null,"url":null,"abstract":"Biological membranes are one of the most basic structures and regions of interest in cell biology. In the study of membranes, segment extraction is a well-known and difficult problem because of impeding noise, directional and thickness variability, etc. Recent advances in electron microscopy membrane segmentation are able to cope with such difficulties by training convolutional neural networks. However, because of the massive amount of features that have to be extracted while propagating forward, the practical usability diminishes, even with state-of-the-art GPU's. A significant part of these network features typically contains redundancy through correlation and sparsity. In this work, we propose a pruning method for convolutional neural networks that ensures the training loss increase is minimized. We show that the pruned networks, after retraining, are more efficient in terms of time and memory, without significantly affecting the network accuracy. This way, we manage to obtain real-time membrane segmentation performance, for our specific electron microscopy setup.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Biological membranes are one of the most basic structures and regions of interest in cell biology. In the study of membranes, segment extraction is a well-known and difficult problem because of impeding noise, directional and thickness variability, etc. Recent advances in electron microscopy membrane segmentation are able to cope with such difficulties by training convolutional neural networks. However, because of the massive amount of features that have to be extracted while propagating forward, the practical usability diminishes, even with state-of-the-art GPU's. A significant part of these network features typically contains redundancy through correlation and sparsity. In this work, we propose a pruning method for convolutional neural networks that ensures the training loss increase is minimized. We show that the pruned networks, after retraining, are more efficient in terms of time and memory, without significantly affecting the network accuracy. This way, we manage to obtain real-time membrane segmentation performance, for our specific electron microscopy setup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络剪枝加速电子显微镜膜分割
生物膜是细胞生物学中最基本的结构和研究领域之一。在膜的研究中,由于干扰噪声、方向和厚度变化等因素,段提取是一个众所周知的难点问题。电子显微镜膜分割的最新进展可以通过训练卷积神经网络来解决这些困难。然而,由于在向前传播时必须提取大量的特征,即使使用最先进的GPU,实际可用性也会降低。这些网络特征的很大一部分通常通过相关性和稀疏性包含冗余。在这项工作中,我们提出了一种卷积神经网络的修剪方法,以确保最小化训练损失的增加。我们表明,经过再训练的修剪后的网络在时间和内存方面更有效,而不会显著影响网络的准确性。通过这种方式,我们能够获得实时膜分割性能,用于我们的特定电子显微镜设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1