Polyphosphate polymerizing and depolymerizing activity of VTC4 protein in an arbuscular mycorrhizal fungus

IF 1.9 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Soil Science and Plant Nutrition Pub Date : 2022-01-22 DOI:10.1080/00380768.2022.2029220
N. Cuc, T. Ezawa, Katsuharu Saito
{"title":"Polyphosphate polymerizing and depolymerizing activity of VTC4 protein in an arbuscular mycorrhizal fungus","authors":"N. Cuc, T. Ezawa, Katsuharu Saito","doi":"10.1080/00380768.2022.2029220","DOIUrl":null,"url":null,"abstract":"ABSTRACT Arbuscular mycorrhizal (AM) fungi form symbiotic associations with land plants and supply soil minerals including phosphorus to their hosts. AM fungi accumulate polyphosphate (polyP), a linear phosphate polymer, in their mycelia, which functions in phosphorus storage and translocation. In the budding yeast Saccharomyces cerevisiae, it has been demonstrated that the vacuolar transporter chaperone 4 (VTC4) protein, a subunit of the VTC complex, is responsible for polyP synthesis. Here, we conducted a comprehensive survey of VTC proteins in eight AM fungal genomes by Blast analysis and characterized the biochemical properties of the Rhizophagus irregularis VTC4. The genomes of AM fungal species encode VTC1, VTC2, and VTC4. The recombinant protein RiVTC4* (RiVTC4183–474) containing the catalytic tunnel domain was expressed in E. coli cells and purified. RiVTC4* is capable of catalyzing polyP polymerization using ATP as a substrate. Pyrophosphate enhanced polyP-polymerizing activity >10-fold. RiVTC4* exhibited maximum activity at neutral pH and required divalent metal ions, preferentially Mn2+. In the presence of high concentrations of ADP, the reverse reaction (the regeneration of ATP from polyP) by RiVTC4* occurred. In the range of 0.2–5 mM ADP, polyP depolymerization by the reverse reaction was observed at the ATP/ADP ratio of less than 2–5. These results suggest that AM fungal VTC4 not only synthesizes polyP but also regenerates ATP from polyP and ADP, which has potential implications for the modulation of polyP and ATP levels in AM fungi.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"7 1","pages":"256 - 267"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00380768.2022.2029220","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Arbuscular mycorrhizal (AM) fungi form symbiotic associations with land plants and supply soil minerals including phosphorus to their hosts. AM fungi accumulate polyphosphate (polyP), a linear phosphate polymer, in their mycelia, which functions in phosphorus storage and translocation. In the budding yeast Saccharomyces cerevisiae, it has been demonstrated that the vacuolar transporter chaperone 4 (VTC4) protein, a subunit of the VTC complex, is responsible for polyP synthesis. Here, we conducted a comprehensive survey of VTC proteins in eight AM fungal genomes by Blast analysis and characterized the biochemical properties of the Rhizophagus irregularis VTC4. The genomes of AM fungal species encode VTC1, VTC2, and VTC4. The recombinant protein RiVTC4* (RiVTC4183–474) containing the catalytic tunnel domain was expressed in E. coli cells and purified. RiVTC4* is capable of catalyzing polyP polymerization using ATP as a substrate. Pyrophosphate enhanced polyP-polymerizing activity >10-fold. RiVTC4* exhibited maximum activity at neutral pH and required divalent metal ions, preferentially Mn2+. In the presence of high concentrations of ADP, the reverse reaction (the regeneration of ATP from polyP) by RiVTC4* occurred. In the range of 0.2–5 mM ADP, polyP depolymerization by the reverse reaction was observed at the ATP/ADP ratio of less than 2–5. These results suggest that AM fungal VTC4 not only synthesizes polyP but also regenerates ATP from polyP and ADP, which has potential implications for the modulation of polyP and ATP levels in AM fungi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丛枝菌根真菌中VTC4蛋白的聚磷酸盐聚合和解聚活性
丛枝菌根真菌(AM)与陆地植物形成共生关系,为寄主提供包括磷在内的土壤矿物质。AM真菌在其菌丝中积累聚磷酸盐(polyP),这是一种线性磷酸盐聚合物,具有磷的储存和转运功能。在出芽酵母酿酒酵母中,已经证明液泡转运蛋白伴侣蛋白4 (VTC4)是VTC复合物的一个亚基,负责polyP的合成。本研究利用Blast分析方法对8个AM真菌基因组的VTC蛋白进行了全面分析,并对不规则根噬菌VTC4的生化特性进行了表征。AM真菌物种的基因组编码VTC1、VTC2和VTC4。含有催化隧道结构域的重组蛋白RiVTC4* (RiVTC4183-474)在大肠杆菌细胞中得到表达和纯化。RiVTC4*能够以ATP为底物催化聚酰亚胺聚合。焦磷酸盐使聚合物聚合活性提高了10倍以上。RiVTC4*在中性pH下表现出最大的活性,需要二价金属离子,优先是Mn2+。在高浓度ADP存在的情况下,RiVTC4*发生了逆反应(从息肉中再生ATP)。在0.2-5 mM ADP范围内,当ATP/ADP比小于2-5时,可观察到聚丙烯发生逆反应解聚。这些结果表明AM真菌VTC4不仅可以合成polyP,还可以从polyP和ADP中再生ATP,这可能对AM真菌中polyP和ATP水平的调节有潜在的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Science and Plant Nutrition
Soil Science and Plant Nutrition 农林科学-农艺学
CiteScore
4.80
自引率
15.00%
发文量
56
审稿时长
18-36 weeks
期刊介绍: Soil Science and Plant Nutrition is the official English journal of the Japanese Society of Soil Science and Plant Nutrition (JSSSPN), and publishes original research and reviews in soil physics, chemistry and mineralogy; soil biology; plant nutrition; soil genesis, classification and survey; soil fertility; fertilizers and soil amendments; environment; socio cultural soil science. The Journal publishes full length papers, short papers, and reviews.
期刊最新文献
Methane and nitrous oxide emissions from agricultural fields in Japan and mitigation options: a review Higher rice yield and lower greenhouse gas emissions with cattle manure amendment is achieved by alternate wetting and drying Interactive influence of particle size and carbonization temperature on Silicon availability in Rice husk biochar Preface to the special section on “past, present, and future biochar utilization for soil sustainability from Asian agronomical and ecological perspectives” Shoot and root responses to low phosphorus and their genotypic variability in selected cultivars of Japanese core collections of maize and soybean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1