Nearest neighbour distributions: New statistical measures for cosmological clustering

Arka Banerjee, T. Abel
{"title":"Nearest neighbour distributions: New statistical measures for cosmological clustering","authors":"Arka Banerjee, T. Abel","doi":"10.1093/mnras/staa3604","DOIUrl":null,"url":null,"abstract":"The use of summary statistics beyond the two-point correlation function to analyze the non-Gaussian clustering on small scales is an active field of research in cosmology. In this paper, we explore a set of new summary statistics -- the $k$-Nearest Neighbor Cumulative Distribution Functions ($k{\\rm NN}$-${\\rm CDF}$). This is the empirical cumulative distribution function of distances from a set of volume-filling, Poisson distributed random points to the $k$--nearest data points, and is sensitive to all connected $N$--point correlations in the data. The $k{\\rm NN}$-${\\rm CDF}$ can be used to measure counts in cell, void probability distributions and higher $N$--point correlation functions, all using the same formalism exploiting fast searches with spatial tree data structures. We demonstrate how it can be computed efficiently from various data sets - both discrete points, and the generalization for continuous fields. We use data from a large suite of $N$-body simulations to explore the sensitivity of this new statistic to various cosmological parameters, compared to the two-point correlation function, while using the same range of scales. We demonstrate that the use of $k{\\rm NN}$-${\\rm CDF}$ improves the constraints on the cosmological parameters by more than a factor of $2$ when applied to the clustering of dark matter in the range of scales between $10h^{-1}{\\rm Mpc}$ and $40h^{-1}{\\rm Mpc}$. We also show that relative improvement is even greater when applied on the same scales to the clustering of halos in the simulations at a fixed number density, both in real space, as well as in redshift space. Since the $k{\\rm NN}$-${\\rm CDF}$ are sensitive to all higher order connected correlation functions in the data, the gains over traditional two-point analyses are expected to grow as progressively smaller scales are included in the analysis of cosmological data.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The use of summary statistics beyond the two-point correlation function to analyze the non-Gaussian clustering on small scales is an active field of research in cosmology. In this paper, we explore a set of new summary statistics -- the $k$-Nearest Neighbor Cumulative Distribution Functions ($k{\rm NN}$-${\rm CDF}$). This is the empirical cumulative distribution function of distances from a set of volume-filling, Poisson distributed random points to the $k$--nearest data points, and is sensitive to all connected $N$--point correlations in the data. The $k{\rm NN}$-${\rm CDF}$ can be used to measure counts in cell, void probability distributions and higher $N$--point correlation functions, all using the same formalism exploiting fast searches with spatial tree data structures. We demonstrate how it can be computed efficiently from various data sets - both discrete points, and the generalization for continuous fields. We use data from a large suite of $N$-body simulations to explore the sensitivity of this new statistic to various cosmological parameters, compared to the two-point correlation function, while using the same range of scales. We demonstrate that the use of $k{\rm NN}$-${\rm CDF}$ improves the constraints on the cosmological parameters by more than a factor of $2$ when applied to the clustering of dark matter in the range of scales between $10h^{-1}{\rm Mpc}$ and $40h^{-1}{\rm Mpc}$. We also show that relative improvement is even greater when applied on the same scales to the clustering of halos in the simulations at a fixed number density, both in real space, as well as in redshift space. Since the $k{\rm NN}$-${\rm CDF}$ are sensitive to all higher order connected correlation functions in the data, the gains over traditional two-point analyses are expected to grow as progressively smaller scales are included in the analysis of cosmological data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最近邻分布:宇宙聚类的新统计方法
利用两点相关函数以外的汇总统计来分析小尺度上的非高斯聚类是宇宙学研究的一个活跃领域。在本文中,我们探索了一组新的汇总统计——$k$-最近邻累积分布函数($k{\rm NN}$-${\rm CDF}$)。这是从一组体积填充、泊松分布随机点到最近的k个数据点的距离的经验累积分布函数,并且对数据中所有连接的N个点的相关性敏感。$k{\rm NN}$-${\rm CDF}$可用于测量单元数、空概率分布和更高的$N$-点相关函数,所有这些都使用相同的形式,利用空间树数据结构进行快速搜索。我们演示了如何从各种数据集有效地计算它-无论是离散点,还是连续域的泛化。我们使用了大量的$N$体模拟数据,在使用相同尺度范围的情况下,与两点相关函数相比,探索了这一新的统计数据对各种宇宙学参数的敏感性。我们证明了在$10h^{-1}{\rm Mpc}$和$40h^{-1}{\rm Mpc}$之间的尺度范围内,使用$k{\rm NN}$-${\rm CDF}$将宇宙学参数的约束提高了$2$以上。我们还表明,当在相同的尺度上应用于固定数量密度的模拟光晕聚类时,无论是在真实空间还是在红移空间中,相对的改进都更大。由于$k{\rm NN}$-${\rm CDF}$对数据中所有高阶连接的相关函数都很敏感,因此随着宇宙学数据分析中包含越来越小的尺度,传统两点分析的收益预计会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1