A robust machine learning structure for driving events recognition using smartphone motion sensors

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2024-01-02 DOI:10.1080/15472450.2022.2101109
Mahdi Zarei Yazd , Iman Taheri Sarteshnizi , Amir Samimi , Majid Sarvi
{"title":"A robust machine learning structure for driving events recognition using smartphone motion sensors","authors":"Mahdi Zarei Yazd ,&nbsp;Iman Taheri Sarteshnizi ,&nbsp;Amir Samimi ,&nbsp;Majid Sarvi","doi":"10.1080/15472450.2022.2101109","DOIUrl":null,"url":null,"abstract":"<div><p>Driving behavior monitoring by smartphone sensors is one of the most investigated approaches to ameliorate road safety. Various methods are adopted in the literature; however, to the best of our knowledge, their robustness to the prediction of new unseen data from different drivers and road conditions is not explored. In this paper, a two-phase Machine Learning (ML) method with taking advantage of high-pass, low-pass, and wavelet filters is developed to detect driving brakes and turns. In the first phase, accelerometer and gyroscope filtered time series are fed into Random Forest and Artificial Neural Network classifiers, and the suspicious intervals are extracted by a high recall. Following that, in the next phase, statistical features calculated based on the obtained intervals are used to determine the false and true positive events. To compare the predicted and real labels of the recorded events and calculate the accuracy, a method that covers the limitations of previous sliding windows is also employed. Real-world experimental result shows that the proposed method can predict new unseen datasets with average F1-scores of 71% in brake detection and 82% in turn detection which is comparable with previous works. Moreover, by sensitivity analysis of our proposed model, it is proven that implementing high-pass and low-pass filters can affect the accuracy for turn detection up to 30%.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 1","pages":"Pages 54-68"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000051","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 2

Abstract

Driving behavior monitoring by smartphone sensors is one of the most investigated approaches to ameliorate road safety. Various methods are adopted in the literature; however, to the best of our knowledge, their robustness to the prediction of new unseen data from different drivers and road conditions is not explored. In this paper, a two-phase Machine Learning (ML) method with taking advantage of high-pass, low-pass, and wavelet filters is developed to detect driving brakes and turns. In the first phase, accelerometer and gyroscope filtered time series are fed into Random Forest and Artificial Neural Network classifiers, and the suspicious intervals are extracted by a high recall. Following that, in the next phase, statistical features calculated based on the obtained intervals are used to determine the false and true positive events. To compare the predicted and real labels of the recorded events and calculate the accuracy, a method that covers the limitations of previous sliding windows is also employed. Real-world experimental result shows that the proposed method can predict new unseen datasets with average F1-scores of 71% in brake detection and 82% in turn detection which is comparable with previous works. Moreover, by sensitivity analysis of our proposed model, it is proven that implementing high-pass and low-pass filters can affect the accuracy for turn detection up to 30%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用智能手机运动传感器识别驾驶事件的稳健机器学习结构
通过智能手机传感器监测驾驶行为是改善道路安全的最有效方法之一。文献中采用了多种方法,但据我们所知,这些方法对于预测来自不同驾驶员和不同路况的新的未见数据的鲁棒性尚未得到探讨。本文开发了一种两阶段机器学习(ML)方法,利用高通、低通和小波滤波器的优势来检测驾驶刹车和转弯。在第一阶段,将加速度计和陀螺仪滤波后的时间序列输入随机森林和人工神经网络分类器,并通过高召回率提取可疑区间。随后,在下一阶段,根据所获得的时间间隔计算出的统计特征将用于确定假阳性事件和真阳性事件。为了比较记录事件的预测标签和真实标签并计算准确率,还采用了一种方法来弥补之前滑动窗口的局限性。真实世界的实验结果表明,所提出的方法可以预测新的未见数据集,在制动检测和转弯检测中的平均 F1 分数分别为 71% 和 82%,与之前的工作不相上下。此外,通过对我们提出的模型进行灵敏度分析,证明采用高通和低通滤波器会对转弯检测的准确性产生高达 30% 的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Comparing the performance of metaheuristics on the Transit Network Frequency Setting Problem Scene adaptation in adverse conditions: a multi-sensor fusion framework for roadside traffic perception Activity-based and agent-based transport model of Melbourne: an open multi-modal transport simulation model for Greater Melbourne Analysis of spatial interactions among shared e-scooters, shared bikes, and public transit Resilience assessment and enhancement of urban road networks subject to traffic accidents: a network-scale optimization strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1