A comprehensive review of sustainable approaches for synthetic lubricant components

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Letters and Reviews Pub Date : 2023-01-02 DOI:10.1080/17518253.2023.2185547
Jessica Pichler, Rosa Maria Eder, C. Besser, Lucia Pisarova, N. Dörr, M. Marchetti‐Deschmann, M. Frauscher
{"title":"A comprehensive review of sustainable approaches for synthetic lubricant components","authors":"Jessica Pichler, Rosa Maria Eder, C. Besser, Lucia Pisarova, N. Dörr, M. Marchetti‐Deschmann, M. Frauscher","doi":"10.1080/17518253.2023.2185547","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the last few years, there is a general shift observable toward greener lubrication, fueled amongst others by policy initiatives such as the European Green Deal in consistency with the UN Sustainable Development Goals. At least 70 vol% of a lubricant is composed of a specific base oil, the rest is a variation of additives altering the lubricant properties (enhancing or suppressing existent base oil properties or adding new properties) to be operational for a particular field of application. So, in terms of sustainability, biodegradability, bioaccumulation, and toxicity the type of base oil plays a major role, which makes environmentally harmful petroleum-based lubricant formulations highly problematic for future applications. Hence, this leads to an ever-growing demand of environmentally friendly lubricant alternatives. Within the scope of this review lies the investigation of bio-based, bio-derived, and other sustainable lubricant components that could serve as promising replacements for conventional petroleum-based formulations, in accordance with the principles of green chemistry and tribology. As recycling is embraced by the term sustainability, waste-derived components of non-biological origin are also included in this work. An overview of studies on the tribological performance such as friction and wear properties of these sustainable and benign lubricant components is given. GRAPHICAL ABSTRACT Sustainable lubricant components in a circular approach.","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2185547","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT In the last few years, there is a general shift observable toward greener lubrication, fueled amongst others by policy initiatives such as the European Green Deal in consistency with the UN Sustainable Development Goals. At least 70 vol% of a lubricant is composed of a specific base oil, the rest is a variation of additives altering the lubricant properties (enhancing or suppressing existent base oil properties or adding new properties) to be operational for a particular field of application. So, in terms of sustainability, biodegradability, bioaccumulation, and toxicity the type of base oil plays a major role, which makes environmentally harmful petroleum-based lubricant formulations highly problematic for future applications. Hence, this leads to an ever-growing demand of environmentally friendly lubricant alternatives. Within the scope of this review lies the investigation of bio-based, bio-derived, and other sustainable lubricant components that could serve as promising replacements for conventional petroleum-based formulations, in accordance with the principles of green chemistry and tribology. As recycling is embraced by the term sustainability, waste-derived components of non-biological origin are also included in this work. An overview of studies on the tribological performance such as friction and wear properties of these sustainable and benign lubricant components is given. GRAPHICAL ABSTRACT Sustainable lubricant components in a circular approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成润滑油成分可持续发展途径的综合综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
期刊最新文献
Life cycle assessment and biodegradability of biodiesel produced using different alcohols and heterogeneous catalysts Sustainable ballistic solutions for recycling silkworm cocoon waste into high-performance bulletproof materials Green synthesis of hydrazono-thiazolones using vitamin B1 and their antibacterial implications Circles of sustainability: an activity for visualizing synergies and trade-offs in a systems thinking environment Retraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1