{"title":"A unified approach of program verification","authors":"T. Gregorics, Z. Borsi","doi":"10.1515/ausi-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract The subject of this paper is a program verification method that takes into account abortion caused by partial functions in program statements. In particular, boolean expressions of various statements will be investigated that are not well-defined. For example, a loop aborts if its execution begins in a state for which the loop condition is undefined. This work considers the program constructs of nondeterministic sequential programs and also deals with the synchronization statement of parallel programs introduced by Owicki and Gries [7]. The syntax of program constructs will be reviewed and their semantics will be formally defined in such a way that they suit the relational model of programming developed at Eőtvős Loránd University [3, 4]. This relational model defines the program as a set of its possible executions and also provides definition for other important programming notions like problem and solution. The proof rules of total correctness [2, 5, 8, 9, 7] will be extended by treating abortion caused by partial functions. The use of these rules will be demonstrated by means of a verification case study.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"17 1","pages":"65 - 82"},"PeriodicalIF":0.3000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ausi-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The subject of this paper is a program verification method that takes into account abortion caused by partial functions in program statements. In particular, boolean expressions of various statements will be investigated that are not well-defined. For example, a loop aborts if its execution begins in a state for which the loop condition is undefined. This work considers the program constructs of nondeterministic sequential programs and also deals with the synchronization statement of parallel programs introduced by Owicki and Gries [7]. The syntax of program constructs will be reviewed and their semantics will be formally defined in such a way that they suit the relational model of programming developed at Eőtvős Loránd University [3, 4]. This relational model defines the program as a set of its possible executions and also provides definition for other important programming notions like problem and solution. The proof rules of total correctness [2, 5, 8, 9, 7] will be extended by treating abortion caused by partial functions. The use of these rules will be demonstrated by means of a verification case study.