Efficient framework for operating on data sketches

Jakub Lemiesz
{"title":"Efficient framework for operating on data sketches","authors":"Jakub Lemiesz","doi":"10.14778/3594512.3594526","DOIUrl":null,"url":null,"abstract":"We study the problem of analyzing massive data streams based on concise data sketches. Recently, a number of papers have investigated how to estimate the results of set-theory operations based on sketches. In this paper we present a framework that allows to estimate the result of any sequence of set-theory operations.\n \n The starting point for our solution is the solution from 2021. Compared to this solution, the newly presented sketching algorithm is much more computationally efficient as it requires on average\n O\n (log\n n\n ) rather than\n O\n (\n n\n ) comparisons for\n n\n stream elements. We also show that the estimator dedicated to sketches proposed in that reference solution is, in fact, a maximum likelihood estimator.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3594512.3594526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of analyzing massive data streams based on concise data sketches. Recently, a number of papers have investigated how to estimate the results of set-theory operations based on sketches. In this paper we present a framework that allows to estimate the result of any sequence of set-theory operations. The starting point for our solution is the solution from 2021. Compared to this solution, the newly presented sketching algorithm is much more computationally efficient as it requires on average O (log n ) rather than O ( n ) comparisons for n stream elements. We also show that the estimator dedicated to sketches proposed in that reference solution is, in fact, a maximum likelihood estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对数据草图进行操作的有效框架
研究了基于简洁数据草图的海量数据流分析问题。最近,一些论文研究了如何基于草图估计集合论运算的结果。在本文中,我们提出了一个框架,允许估计任何集合论操作序列的结果。我们的解决方案的起点是2021年的解决方案。与此解决方案相比,新提出的草图绘制算法的计算效率更高,因为它对n个流元素平均需要O (log n)而不是O (n)个比较。我们还表明,在该参考解决方案中提出的专门用于草图的估计量实际上是一个极大似然估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cryptographically Secure Private Record Linkage Using Locality-Sensitive Hashing Utility-aware Payment Channel Network Rebalance Relational Query Synthesis ⋈ Decision Tree Learning Billion-Scale Bipartite Graph Embedding: A Global-Local Induced Approach Query Refinement for Diversity Constraint Satisfaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1