{"title":"EXPERIMENTAL STUDY OF ABRASIVE WATER JET MACHINING OF KEVLAR EPOXY COMPOSITE","authors":"Puneet Kumar, R. Kant","doi":"10.37255/jme.v4i1pp026-032","DOIUrl":null,"url":null,"abstract":"The present paper describes an experimental study of abrasive water jet machining (AWJM) of Kevlar epoxy composite. Influence of process parameters namely stand-off distance, water pressure, traverse speed and abrasive mass flow rate on surface roughness and kerf taper is investigated. Taguchi orthogonal approach is applied to plan the design of experiments; and subsequent analysis of experimental data is done using analysis of variance (ANOVA). It is found that water pressure and traverse speed are most significant parameters followed by stand-off distance and abrasive mass flow rate influencing surface roughness and kerf taper. With increase in water pressure\nand decrease in traverse speed, kerf taper and surface roughness decreases.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v4i1pp026-032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8
Abstract
The present paper describes an experimental study of abrasive water jet machining (AWJM) of Kevlar epoxy composite. Influence of process parameters namely stand-off distance, water pressure, traverse speed and abrasive mass flow rate on surface roughness and kerf taper is investigated. Taguchi orthogonal approach is applied to plan the design of experiments; and subsequent analysis of experimental data is done using analysis of variance (ANOVA). It is found that water pressure and traverse speed are most significant parameters followed by stand-off distance and abrasive mass flow rate influencing surface roughness and kerf taper. With increase in water pressure
and decrease in traverse speed, kerf taper and surface roughness decreases.