A. Gole, Arun Kumar, S. Phadtare, A. B. Mandale, M. Sastry
{"title":"Glucose induced in-situ reduction of chloroaurate ions entrapped in a fatty amine film: formation of gold nanoparticle–lipid composites","authors":"A. Gole, Arun Kumar, S. Phadtare, A. B. Mandale, M. Sastry","doi":"10.1039/B106564E","DOIUrl":null,"url":null,"abstract":"The formation of gold nanoparticle–lipid composite films by glucose-induced reduction of chloroaurate ions entrapped in thermally evaporated fatty amine films is described. Simple immersion of films of the salt of octadecylamine and chloroaurate ions (formed by immersion of thermally evaporated fatty amine films in chloroauric acid solution) in glucose solution leads to the facile in-situ reduction of the metal ions to form gold nanoparticles in the fatty amine matrix. The formation of gold nanoparticles is readily detected by the appearance of a violet color in the film and thus forms the basis of a possible new, gold nanoparticle-based colorimetric sensor for glucose. The formation of the fatty amine salt of chloroauric acid and the subsequent reduction of the metal ions by glucose has been followed by quartz crystal microgravimetry, Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy and transmission electron microscopy measurements.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":"9 1","pages":"92-95"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B106564E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The formation of gold nanoparticle–lipid composite films by glucose-induced reduction of chloroaurate ions entrapped in thermally evaporated fatty amine films is described. Simple immersion of films of the salt of octadecylamine and chloroaurate ions (formed by immersion of thermally evaporated fatty amine films in chloroauric acid solution) in glucose solution leads to the facile in-situ reduction of the metal ions to form gold nanoparticles in the fatty amine matrix. The formation of gold nanoparticles is readily detected by the appearance of a violet color in the film and thus forms the basis of a possible new, gold nanoparticle-based colorimetric sensor for glucose. The formation of the fatty amine salt of chloroauric acid and the subsequent reduction of the metal ions by glucose has been followed by quartz crystal microgravimetry, Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy and transmission electron microscopy measurements.