Waveform selection for range and Doppler estimation via Barankin bound signal-to-noise ratio threshold

John S. Kota, N. Kovvali, D. Bliss, A. Papandreou-Suppappola
{"title":"Waveform selection for range and Doppler estimation via Barankin bound signal-to-noise ratio threshold","authors":"John S. Kota, N. Kovvali, D. Bliss, A. Papandreou-Suppappola","doi":"10.1109/ICASSP.2014.6854485","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the tracking of a radar target with unknown range and range rate at low signal-to-noise ratio (SNR). For this nonlinear estimation problem, the Cramér-Rao lower bound (CRLB) provides a bound on an unbiased estimator's mean-squared error (MSE). However, there exists a threshold SNR at which the estimator variance deviates from the CRLB. We consider the Barankin bound (BB) on the range and range-rate variance in order to obtain a tighter lower bound at low SNR, and we use the BB to predict the SNR threshold for a transmitted signal. We demonstrate that the BB with the additional information provided by the threshold SNR has an advantage over the CRLB in selecting the optimal transmit waveform at low SNRs. We also develop a waveform parameter configuration method that uses the BB and the ambiguity function resolution cell measurement model to optimize the SNR threshold.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"4658-4662"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we consider the tracking of a radar target with unknown range and range rate at low signal-to-noise ratio (SNR). For this nonlinear estimation problem, the Cramér-Rao lower bound (CRLB) provides a bound on an unbiased estimator's mean-squared error (MSE). However, there exists a threshold SNR at which the estimator variance deviates from the CRLB. We consider the Barankin bound (BB) on the range and range-rate variance in order to obtain a tighter lower bound at low SNR, and we use the BB to predict the SNR threshold for a transmitted signal. We demonstrate that the BB with the additional information provided by the threshold SNR has an advantage over the CRLB in selecting the optimal transmit waveform at low SNRs. We also develop a waveform parameter configuration method that uses the BB and the ambiguity function resolution cell measurement model to optimize the SNR threshold.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用巴兰金界信噪比阈值进行距离和多普勒估计的波形选择
本文研究了在低信噪比条件下未知距离和距离速率的雷达目标跟踪问题。对于这种非线性估计问题,cram r- rao下界(CRLB)提供了无偏估计量均方误差(MSE)的一个界。然而,存在一个阈值信噪比,估计量方差偏离CRLB。为了在低信噪比下获得更严格的下界,我们考虑了距离和距离率方差的巴兰金界(BB),并使用BB来预测传输信号的信噪比阈值。我们证明了具有阈值信噪比提供的附加信息的BB在低信噪比下选择最佳发射波形方面比CRLB具有优势。我们还开发了一种波形参数配置方法,该方法使用BB和模糊函数分辨率单元测量模型来优化信噪比阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1