{"title":"X-ray diffraction diagnostic paired with gas gun driven compression of polyethylene","authors":"R. Huber, E. Watkins, D. Dattelbaum, R. Gustavsen","doi":"10.1115/hvis2019-112","DOIUrl":null,"url":null,"abstract":"\n Understanding the kinetics of phase transitions, including decomposition from reactants to products under extreme condition events is challenging. Capturing these processes require: 1) diagnostics that probe on the timescales and at energies capable of interacting with the dynamically evolving products, penetrating the opaqueness of the changing system; and 2) detectors sensitive enough to observe these events. Synchrotrons and free electron lasers provide ke-V-energy x-ray beams capable of penetrating the optical-opaqueness of the temporally evolving products. At the Dynamic Compression Sector at the Advanced Photon Source, the x-ray beam is coupled to single and two-stage gas guns capable of producing planar shocks at a range of projectile velocities while capturing in situ x-ray diffraction/scattering of the evolving material under dynamic compression. In this work, we demonstrate the utility of this approach in measuring the evolution of crystalline domains in shocked high-density polyethylene to P = 7.45 GPa, and have observed the compression and orientation of the polymer chains in real time.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the kinetics of phase transitions, including decomposition from reactants to products under extreme condition events is challenging. Capturing these processes require: 1) diagnostics that probe on the timescales and at energies capable of interacting with the dynamically evolving products, penetrating the opaqueness of the changing system; and 2) detectors sensitive enough to observe these events. Synchrotrons and free electron lasers provide ke-V-energy x-ray beams capable of penetrating the optical-opaqueness of the temporally evolving products. At the Dynamic Compression Sector at the Advanced Photon Source, the x-ray beam is coupled to single and two-stage gas guns capable of producing planar shocks at a range of projectile velocities while capturing in situ x-ray diffraction/scattering of the evolving material under dynamic compression. In this work, we demonstrate the utility of this approach in measuring the evolution of crystalline domains in shocked high-density polyethylene to P = 7.45 GPa, and have observed the compression and orientation of the polymer chains in real time.