Amodal Detection of 3D Objects: Inferring 3D Bounding Boxes from 2D Ones in RGB-Depth Images

Zhuo Deng, Longin Jan Latecki
{"title":"Amodal Detection of 3D Objects: Inferring 3D Bounding Boxes from 2D Ones in RGB-Depth Images","authors":"Zhuo Deng, Longin Jan Latecki","doi":"10.1109/CVPR.2017.50","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of amodal perception of 3D object detection. The task is to not only find object localizations in the 3D world, but also estimate their physical sizes and poses, even if only parts of them are visible in the RGB-D image. Recent approaches have attempted to harness point cloud from depth channel to exploit 3D features directly in the 3D space and demonstrated the superiority over traditional 2.5D representation approaches. We revisit the amodal 3D detection problem by sticking to the 2.5D representation framework, and directly relate 2.5D visual appearance to 3D objects. We propose a novel 3D object detection system that simultaneously predicts objects 3D locations, physical sizes, and orientations in indoor scenes. Experiments on the NYUV2 dataset show our algorithm significantly outperforms the state-of-the-art and indicates 2.5D representation is capable of encoding features for 3D amodal object detection. All source code and data is on https://github.com/phoenixnn/Amodal3Det.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"66 1","pages":"398-406"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

Abstract

This paper addresses the problem of amodal perception of 3D object detection. The task is to not only find object localizations in the 3D world, but also estimate their physical sizes and poses, even if only parts of them are visible in the RGB-D image. Recent approaches have attempted to harness point cloud from depth channel to exploit 3D features directly in the 3D space and demonstrated the superiority over traditional 2.5D representation approaches. We revisit the amodal 3D detection problem by sticking to the 2.5D representation framework, and directly relate 2.5D visual appearance to 3D objects. We propose a novel 3D object detection system that simultaneously predicts objects 3D locations, physical sizes, and orientations in indoor scenes. Experiments on the NYUV2 dataset show our algorithm significantly outperforms the state-of-the-art and indicates 2.5D representation is capable of encoding features for 3D amodal object detection. All source code and data is on https://github.com/phoenixnn/Amodal3Det.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维物体的模态检测:从rgb深度图像的二维边界框推断三维边界框
本文研究了三维目标检测中的模态感知问题。这项任务不仅是在3D世界中找到物体的定位,而且还要估计它们的物理大小和姿势,即使它们只有一部分在RGB-D图像中可见。最近的方法试图利用深度通道中的点云直接在3D空间中利用3D特征,并证明了其优于传统的2.5D表示方法。我们通过坚持2.5D表示框架重新审视模态3D检测问题,并直接将2.5D视觉外观与3D对象联系起来。我们提出了一种新的3D物体检测系统,可以同时预测室内场景中物体的3D位置、物理大小和方向。在NYUV2数据集上的实验表明,我们的算法明显优于最先进的算法,并表明2.5D表示能够编码3D模态对象检测的特征。所有源代码和数据在https://github.com/phoenixnn/Amodal3Det。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1