{"title":"Competitive advantage in algorithmic trading: a behavioral innovation economics approach","authors":"Ricky Cooper, W. Currie, J. Seddon, Ben Van Vliet","doi":"10.1108/rbf-06-2021-0119","DOIUrl":null,"url":null,"abstract":"PurposeThis paper investigates the strategic behavior of algorithmic trading firms from an innovation economics perspective. The authors seek to uncover the sources of competitive advantage these firms develop to make markets inefficient for them and enable their survival.Design/methodology/approachFirst, the authors review expected capability, a quantitative behavioral model of the sustainable, or reliable, profits that lead to survival. Second, they present qualitative data gathered from semi-structured interviews with industry professionals as well as from the academic and industry literatures. They categorize this data into first-order concepts and themes of opportunity-, advantage- and meta-seeking behaviors. Associating the observed sources of competitive advantages with the components of the expected capability model allows us to describe the economic rationale these firms have for developing those sources and explain how they survive.FindingsThe data reveals ten sources of competitive advantages, which the authors label according to known ones in the strategic management literature. We find that, due to the dynamically complex environments and their bounded resources, these firms seek heuristic compromise among these ten, which leads to satisficing. Their application of innovation methodology that prescribes iterative ex post hypothesis testing appears to quell internal conflict among groups and promote organizational survival. The authors believe their results shed light on the behavior and motivations of algorithmic market actors, but also of innovative firms more generally.Originality/valueBased upon their review of the literature, this is the first paper to provide such a complete explanation of the strategic behavior of algorithmic trading firms.","PeriodicalId":44559,"journal":{"name":"Review of Behavioral Finance","volume":"52 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Behavioral Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rbf-06-2021-0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis paper investigates the strategic behavior of algorithmic trading firms from an innovation economics perspective. The authors seek to uncover the sources of competitive advantage these firms develop to make markets inefficient for them and enable their survival.Design/methodology/approachFirst, the authors review expected capability, a quantitative behavioral model of the sustainable, or reliable, profits that lead to survival. Second, they present qualitative data gathered from semi-structured interviews with industry professionals as well as from the academic and industry literatures. They categorize this data into first-order concepts and themes of opportunity-, advantage- and meta-seeking behaviors. Associating the observed sources of competitive advantages with the components of the expected capability model allows us to describe the economic rationale these firms have for developing those sources and explain how they survive.FindingsThe data reveals ten sources of competitive advantages, which the authors label according to known ones in the strategic management literature. We find that, due to the dynamically complex environments and their bounded resources, these firms seek heuristic compromise among these ten, which leads to satisficing. Their application of innovation methodology that prescribes iterative ex post hypothesis testing appears to quell internal conflict among groups and promote organizational survival. The authors believe their results shed light on the behavior and motivations of algorithmic market actors, but also of innovative firms more generally.Originality/valueBased upon their review of the literature, this is the first paper to provide such a complete explanation of the strategic behavior of algorithmic trading firms.
期刊介绍:
Review of Behavioral Finance publishes high quality original peer-reviewed articles in the area of behavioural finance. The RBF focus is on Behavioural Finance but with a very broad lens looking at how the behavioural attributes of the decision makers influence the financial structure of a company, investors’ portfolios, and the functioning of financial markets. High quality empirical, experimental and/or theoretical research articles as well as well executed literature review articles are considered for publication in the journal.