Mohammed Al Hamad, Ping Zhang, Ahmad M. AlZoukani, B. Altundas, Wael Abdallah
{"title":"Monitoring Dynamic Water Injection to Improve Oil Recovery Efficiency","authors":"Mohammed Al Hamad, Ping Zhang, Ahmad M. AlZoukani, B. Altundas, Wael Abdallah","doi":"10.2118/204755-ms","DOIUrl":null,"url":null,"abstract":"\n Dynamic water, also known as smart water, injected at the end of conventional water flood by seawater, is known to show significant improvement in recovering additional oil. Different mechanisms have been proposed and lab measurements were conducted to understand the underlying process of additional oil recovery through dynamic water injection in lab conditions. In this work, we study the effects of different dynamic water injection scenarios on oil recovery in carbonate reservoirs based on reservoir simulations using representative fluid and rock properties with relative permeability curves obtained from core studies. To quantify the changes in measurable multiphysics properties due to dynamic water injection and reconcile multiphysics interpretation with additional oil recovery at field scale, a petrophysically consistent multiphysics effective property modeling is conducted. Based on the simulation results, dynamic water injection is shown to be effective in additional oil recovery at field scale post seawater injection. In addition, saturation changes caused by dynamic water injection result in detectable time-lapse contrast in the corresponding conductivity profiles, suggesting feasibility of the resistivity measurements to monitor dynamic water injection. This paper shows the advantages and benefits of petrophysically consistent multiphysics effective property modeling for a successful fluid monitoring design for quantifying the efficiency of dynamic water injection on additional oil recovery post seawater flood.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204755-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic water, also known as smart water, injected at the end of conventional water flood by seawater, is known to show significant improvement in recovering additional oil. Different mechanisms have been proposed and lab measurements were conducted to understand the underlying process of additional oil recovery through dynamic water injection in lab conditions. In this work, we study the effects of different dynamic water injection scenarios on oil recovery in carbonate reservoirs based on reservoir simulations using representative fluid and rock properties with relative permeability curves obtained from core studies. To quantify the changes in measurable multiphysics properties due to dynamic water injection and reconcile multiphysics interpretation with additional oil recovery at field scale, a petrophysically consistent multiphysics effective property modeling is conducted. Based on the simulation results, dynamic water injection is shown to be effective in additional oil recovery at field scale post seawater injection. In addition, saturation changes caused by dynamic water injection result in detectable time-lapse contrast in the corresponding conductivity profiles, suggesting feasibility of the resistivity measurements to monitor dynamic water injection. This paper shows the advantages and benefits of petrophysically consistent multiphysics effective property modeling for a successful fluid monitoring design for quantifying the efficiency of dynamic water injection on additional oil recovery post seawater flood.