Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms

Hao Tong, Shuyi Zhang, Changwu Huang, X. Yao
{"title":"Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms","authors":"Hao Tong, Shuyi Zhang, Changwu Huang, X. Yao","doi":"10.1109/SSCI44817.2019.9003101","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms’ performance can be enhanced significantly by using suitable parameter configurations when solving optimization problems. Most existing parametertuning methods are inefficient, which tune algorithm’s parameters using whole benchmark function set and only obtain one parameter configuration. Moreover, the only obtained parameter configuration is likely to fail when solving different problems. In this paper, we propose a framework that applying portfolio for parameter-tuned algorithm (PPTA) to address these challenges. PPTA uses the parameter-tuned algorithm to tune algorithm’s parameters on one instance of each problem category, but not to all functions in the benchmark. As a result, it can obtain one parameter configuration for each problem category. Then, PPTA combines several instantiations of the same algorithms with different tuned parameters by portfolio method to decrease the risk of solving unknown problems. In order to analyse the performance of PPTA framework, we embed several test algorithms (i.e. GA, DE and PSO) into PPTA framework constructing algorithm instances. And the PPTA instances are compared with default test algorithms on BBOB2009 and CEC2005 benchmark functions. The experimental results has shown PPTA framework can significantly enhance the basic algorithm’s performance and reduce its optimization risk as well as the algorithm’s parametertuning time.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"7 1","pages":"1849-1856"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary algorithms’ performance can be enhanced significantly by using suitable parameter configurations when solving optimization problems. Most existing parametertuning methods are inefficient, which tune algorithm’s parameters using whole benchmark function set and only obtain one parameter configuration. Moreover, the only obtained parameter configuration is likely to fail when solving different problems. In this paper, we propose a framework that applying portfolio for parameter-tuned algorithm (PPTA) to address these challenges. PPTA uses the parameter-tuned algorithm to tune algorithm’s parameters on one instance of each problem category, but not to all functions in the benchmark. As a result, it can obtain one parameter configuration for each problem category. Then, PPTA combines several instantiations of the same algorithms with different tuned parameters by portfolio method to decrease the risk of solving unknown problems. In order to analyse the performance of PPTA framework, we embed several test algorithms (i.e. GA, DE and PSO) into PPTA framework constructing algorithm instances. And the PPTA instances are compared with default test algorithms on BBOB2009 and CEC2005 benchmark functions. The experimental results has shown PPTA framework can significantly enhance the basic algorithm’s performance and reduce its optimization risk as well as the algorithm’s parametertuning time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数调整进化算法的算法组合
在求解优化问题时,采用合适的参数配置可以显著提高进化算法的性能。现有的参数调优方法大多是利用整个基准函数集对算法参数进行调优,只得到一个参数组态,效率低下。而且,在解决不同的问题时,唯一获得的参数配置可能会失败。在本文中,我们提出了一个应用组合参数调谐算法(PPTA)的框架来解决这些挑战。PPTA使用参数调优算法在每个问题类别的一个实例上调优算法的参数,而不是对基准测试中的所有函数进行调优。因此,它可以为每个问题类别获得一个参数配置。然后,PPTA通过组合方法组合具有不同调优参数的相同算法的多个实例,以降低解决未知问题的风险。为了分析PPTA框架的性能,我们将几种测试算法(即GA、DE和PSO)嵌入到PPTA框架中,构建算法实例。并在BBOB2009和CEC2005基准函数上与默认测试算法进行了比较。实验结果表明,PPTA框架可以显著提高基本算法的性能,降低算法的优化风险,降低算法的参数调整时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1